18.已知三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,SA⊥平面ABC,SA=2$\sqrt{3}$,AB=1,AC=2,$∠BAC=\frac{π}{3}$,則球O的表面積為( 。
A.16πB.12πC.D.

分析 由三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,SA⊥平面ABC,SA=2$\sqrt{3}$,AB=1,AC=2,∠BAC=60°,知BC=$\sqrt{3}$,∠ABC=90°.故△ABC截球O所得的圓O′的半徑r=$\frac{1}{2}$AC=1,由此能求出球O的半徑,從而能求出球O的表面積.

解答 解:如圖,三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,
∵SA⊥平面ABC,SA=2$\sqrt{3}$,AB=1,AC=2,∠BAC=60°,
∴BC=$\sqrt{1+4-2×1×2×cos60°}$=$\sqrt{3}$,
∴∠ABC=90°.
∴△ABC截球O所得的圓O′的半徑r=$\frac{1}{2}$AC=1,
∴球O的半徑R=$\sqrt{{1}^{2}+(\frac{2\sqrt{3}}{2})^{2}}$=2,
∴球O的表面積S=4πR2=16π.
故選:A.

點(diǎn)評 本題考查球的表面積的求法,合理地作出圖形,數(shù)形結(jié)合求出球半徑,是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=log2(x+2)+x-5存在唯一零點(diǎn)x0,則大于x0的最小整數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)x∈R,函數(shù)$f(x)=sin(ωx+φ)(ω>0,-\frac{π}{2}<φ<0)$的最小正周期為π,且$f(\frac{π}{4})=\frac{1}{2}$.
(Ⅰ)求ω和φ的值;
(Ⅱ)求函數(shù)f(x)在(-π,π)上的單調(diào)第減區(qū)間;
(Ⅲ)若f(x)>$\frac{{\sqrt{2}}}{2}$,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2lnx-x2
(1)求函數(shù)f(x)在x=1處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(3)若函數(shù)f(x)與g(x)=x+$\frac{a}{x}$(a∈R)有相同極值點(diǎn),且對于任意的${x_1},{x_2}∈[\frac{1}{e},e]$,不等式f(x1)-g(x2)≤m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在等比數(shù)列{an}中,a3=7,前3項(xiàng)之和S3=21,則公比q的值等于( 。
A.1B.-$\frac{1}{2}$C.1或$-\frac{1}{2}$D.-1或$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.$\int\begin{array}{l}1\\ 0\end{array}\;x\;dx$=( 。
A.-1B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知定義在[-3,3]上的函數(shù)f(x)=(x2+ax+b)x,在x=±1處的切線斜率均為-1.有以下命題:
①f(x)是奇函數(shù);
②若f(x)在[s,t]內(nèi)遞減,則|t-s|的最大值為4;
③若方程f(x)-m=0有三個根,則m的取值范圍是$(-\frac{{16\sqrt{3}}}{9},\frac{{16\sqrt{3}}}{9})$;
④若對?x∈[-3,3],k≤f′(x)恒成立,則k的最大值為3.
其中正確命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.觀察以下列出的表達(dá)式:$f(n,1)=\frac{1}{2}{n^2}+\frac{1}{2}n$,f(n,2)=n2,$f(n,3)=\frac{3}{2}{n^2}-\frac{1}{2}n$,f(n,4)=2n2-n,
…推測f(n,k)的表達(dá)式,由此計(jì)算f(10,20)=910.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)g(x)=x3+($\frac{m}{2}$+2)x2-2x在(2,3)上總存在極值,則實(shí)數(shù)m的取值范圍為(  )
A.(-$\frac{58}{9}$,-6)B.(-$\frac{37}{3}$,-9)C.(-$\frac{37}{3}$,9)D.(-$\frac{37}{3}$,-6)

查看答案和解析>>

同步練習(xí)冊答案