用數(shù)學(xué)歸納法證明“當(dāng)n∈N*時(shí),1+2+22+23+…+25n-1是31的倍數(shù)”時(shí),從k到k+1時(shí)需添加的項(xiàng)是 ..
【答案】分析:從式子1+2+22+23+…+25n-1,觀察當(dāng)從n=k到n=k+1的變化情況,從而解決問(wèn)題.
解答:解:當(dāng)n=k時(shí),原式=1+2+22+…+25k-1當(dāng)n=k+1時(shí),原式=1+2+22+…+25k+4
∴從k到k+1時(shí)需增添的項(xiàng)是 25k+25k+1+25k+2+25k+3+25k+4,
故答案為:25k+25k+1+25k+2+25k+3+25k+4
點(diǎn)評(píng):數(shù)學(xué)歸納法常常用來(lái)證明一個(gè)與自然數(shù)集N相關(guān)的性質(zhì),其步驟為:設(shè)P(n)是關(guān)于自然數(shù)n的命題,若1)(奠基) P(n)在n=1時(shí)成立;2)(歸納) 在P(k)(k為任意自然數(shù))成立的假設(shè)下可以推出P(k+1)成立,則P(n)對(duì)一切自然數(shù)n都成立.