已知三角形的三個(gè)頂點(diǎn)是A(4,0),B(6,6),C(0,2).
(1)求AB邊上的高所在直線的方程;
(2)求AC邊上的中線所在直線的方程.
考點(diǎn):直線的一般式方程與直線的垂直關(guān)系
專(zhuān)題:直線與圓
分析:(1)由kAB=
6-0
6-4
=3,知AB邊上的高所在直線的斜率k=-
1
3
,由此利用點(diǎn)斜式方程級(jí)求出AB邊上的高所在直線的方程.
(2)由AC邊的中點(diǎn)為(2,1),利用兩點(diǎn)式方程級(jí)求出AC邊上的中線所在直線的方程.
解答: 解:(1)∵A(4,0),B(6,6),C(0,2),
kAB=
6-0
6-4
=3,∴AB邊上的高所在直線的斜率k=-
1
3

∴AB邊上的高所在直線的方程為y-2=-
1
3
x
,
整理,得x+3y-6=0.
(2)∵AC邊的中點(diǎn)為(2,1),
∴AC邊上的中線所在的直線方程為
y-1
6-1
=
x-2
6-2
,
整理,得5x-4y-6=0.
點(diǎn)評(píng):本題考查直線方程的求法,解題時(shí)要認(rèn)真審題,注意點(diǎn)斜式方程和兩點(diǎn)式方程的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,圓ρ=2cosθ+2sinθ的圓心的極坐標(biāo)是(  )
A、(1,
π
2
B、(1,
π
4
C、(
2
,
π
4
D、(
2
,
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα+cosα=
7
5
,且0<α<
π
4

(Ⅰ)求sinαcosα、sinα-cosα的值;
(Ⅱ)求
sin3α
1+tanα
-
sinα•cos3α
sinα+cosα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知平行四邊形ABCD中,BC=2,BD⊥CD,四邊形ADEF為正方形,平面ADEF⊥平面ABCD.
(Ⅰ)求證:ED⊥BC;
(Ⅱ)記CD=x,當(dāng)三棱錐F-ABD的體積V(x)取得最大值時(shí),求直線EB與平面DBF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足a1=2,an-1-an=2n,設(shè)bn=n•an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=(
an
2
2+
an
2

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若Tn=
a12+1
a12-1
+
a22+1
a22-1
+
a32+1
a32-1
+…+
an2+1
an2-1
,求證:Tn
an
2
+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖為一簡(jiǎn)單組合體,其底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC.
(1)求證:BE∥平面PDA;
(2)求證:平面PBD⊥平面PBE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A,∠B,∠C的對(duì)邊分別為a,b,c,cos
A+C
2
=
3
3

(Ⅰ)求cosB的值;
(Ⅱ)若a+c=2
6
,b=2
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

同時(shí)擲三個(gè)色子,將三個(gè)色子點(diǎn)數(shù)相加,得到7,11,13點(diǎn)的概率分別是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案