A. | $\frac{3π}{2}$ | B. | 2π | C. | 6π | D. | $\sqrt{6}$π |
分析 根據(jù)定義,先作出它的平面角,如圖所示.進(jìn)一步分析此三棱錐的結(jié)構(gòu)特征,找出其外接球半徑的幾何或數(shù)量表示,再進(jìn)行計(jì)算.
解答 解:如圖所示:
取AC中點(diǎn)D,連接SD,BD,則由AB=BC,SA=SC得出SD⊥AC,BD⊥AC,
∴∠SDB為S-AC-B的平面角,且AC⊥面SBD.
由題意:AB⊥BC,AB=BC=$\sqrt{2}$,得:△ABC為等腰直角三角形,且AC=2,
又∵BD⊥AC,故BD=AD=$\frac{1}{2}$AC,
在△SBD中,BD=$\frac{1}{2}×2$=1,
在△SAC中,SD2=SA2-AD2=22-12=3,
在△SBD中,由余弦定理得SB2=SD2+BD2-2SD•BDcos∠SDB=3+1-2×$\sqrt{3}×1×\frac{\sqrt{3}}{3}$=2,
滿足SB2=SD2-BD2,∴∠SBD=90°,SB⊥BD,
又SB⊥AC,BD∩AC=D,∴SB⊥面ABC.
以SB,BA,BC為頂點(diǎn)可以補(bǔ)成一個(gè)棱長(zhǎng)為2的正方體,S、A、B、C都在正方體的外接球上,
正方體的對(duì)角線為球的一條直徑,∴2R=$\sqrt{3}×\sqrt{2}$,R=$\frac{\sqrt{6}}{2}$,球的表面積S=4$π×\frac{6}{4}$=6π.
故選:C.
點(diǎn)評(píng) 本題考查面面角,考查球的表面積,解題的關(guān)鍵是確定外接圓的半徑,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $-\sqrt{3}$ | C. | $-\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10 | B. | 11 | C. | 12 | D. | 13 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2,$\frac{π}{3}$),(1,$\sqrt{3}$) | B. | (2,-$\frac{π}{3}$),(1,-$\sqrt{3}$) | C. | (2,$\frac{2π}{3}$),(-1,$\sqrt{3}$) | D. | (2,-$\frac{2π}{3}$),(-1,-$\sqrt{3}$) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com