【題目】某食品的保鮮時(shí)間y(單位:小時(shí))與儲(chǔ)藏溫度x(單位:℃)滿(mǎn)足函數(shù)關(guān)系y=ekx+b(e=2.718…為自然對(duì)數(shù)的底數(shù),k、b為常數(shù)).若該食品在0℃的保鮮時(shí)間是192小時(shí),在22℃的保鮮時(shí)間是48小時(shí),則該食品在33℃的保鮮時(shí)間是小時(shí).

【答案】24
【解析】解:由題意可得,x=0時(shí),y=192;x=22時(shí),y=48.代入函數(shù)y=ekx+b ,
可得eb=192,e22k+b=48,
即有e11k= ,eb=192,
則當(dāng)x=33時(shí),y=e33k+b= ×192=24.
故答案為:24.
由題意可得,x=0時(shí),y=192;x=22時(shí),y=48.代入函數(shù)y=ekx+b , 解方程,可得k,b,再由x=33,代入即可得到結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+c在x=﹣ 與x=1時(shí)都取得極值,求a,b的值與函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】規(guī)定投擲飛鏢3次為一輪,若3次中至少兩次投中8環(huán)以上為優(yōu)秀,現(xiàn)采用隨機(jī)模擬實(shí)驗(yàn)的方法估計(jì)某人投擲飛鏢的情況:先由計(jì)算器產(chǎn)生隨機(jī)數(shù)0或1,用0表示該次投標(biāo)未在8環(huán)以上,用1表示該次投標(biāo)在8環(huán)以上;再以每三個(gè)隨機(jī)數(shù)作為一組,代表一輪的結(jié)果,經(jīng)隨機(jī)模擬實(shí)驗(yàn)產(chǎn)生了如下20組隨機(jī)數(shù):

101 111 011 101 010 100 100 011 111 110

000 011 010 001 111 011 100 000 101 101

據(jù)此估計(jì),該選手投擲飛鏢三輪,至少有一輪可以拿到優(yōu)秀的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的多面體中, 是平行四邊形, 是矩形, , .

(Ⅰ)求證:平面平面;

(Ⅱ)若,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若的定義域和值域均是,求實(shí)數(shù)的值;

(2)若對(duì)任意的,總有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,其中.

(1)當(dāng)時(shí),求的單調(diào)區(qū)間;

(2)證明:對(duì)任意的在區(qū)間內(nèi)均存在零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,其中.

(1)求函數(shù)的極大值點(diǎn);

(2)當(dāng)時(shí),若在上至少存在一點(diǎn),使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1﹣x)其中(a>0且a≠1),設(shè)h(x)=f(x)﹣g(x).
(1)求函數(shù)h(x)的定義域,判斷h(x)的奇偶性,并說(shuō)明理由;
(2)若f(3)=2,求使h(x)<0成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,已知曲線(xiàn) , ,設(shè)交于點(diǎn).

(1)求點(diǎn)的極坐標(biāo);

(2)若直線(xiàn)過(guò)點(diǎn),且與曲線(xiàn)交于兩不同的點(diǎn),求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案