【題目】某學(xué)校開設(shè)了射擊選修課,規(guī)定向、兩個靶進(jìn)行射擊:先向靶射擊一次,命中得1分,沒有命中得0分,向靶連續(xù)射擊兩次,每命中一次得2分,沒命中得0分;小明同學(xué)經(jīng)訓(xùn)練可知:向靶射擊,命中的概率為,向靶射擊,命中的概率為,假設(shè)小明同學(xué)每次射擊的結(jié)果相互獨立.現(xiàn)對小明同學(xué)進(jìn)行以上三次射擊的考核.
(1)求小明同學(xué)恰好命中一次的概率;
(2)求小明同學(xué)獲得總分的分布列及數(shù)學(xué)期望.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“割圓術(shù)”是我國古代計算圓周率的一種方法.在公元年左右,由魏晉時期的數(shù)學(xué)家劉徽發(fā)明.其原理就是利用圓內(nèi)接正多邊形的面積逐步逼近圓的面積,進(jìn)而求.當(dāng)時劉微就是利用這種方法,把的近似值計算到和之間,這是當(dāng)時世界上對圓周率的計算最精確的數(shù)據(jù).這種方法的可貴之處就是利用已知的、可求的來逼近未知的、要求的,用有限的來逼近無窮的.為此,劉微把它概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣”.這種方法極其重要,對后世產(chǎn)生了巨大影響,在歐洲,這種方法后來就演變?yōu)楝F(xiàn)在的微積分.根據(jù)“割圓術(shù)”,若用正二十四邊形來估算圓周率,則的近似值是( )(精確到)(參考數(shù)據(jù))
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第7屆世界軍人運(yùn)動會于2019年10月18日至27日在湖北武漢舉行,賽期10天,共設(shè)置射擊、游泳、田徑、籃球等27個大項,329個小項,共有來自100多個國家的近萬名現(xiàn)役軍人同臺競技.前期為迎接軍運(yùn)會順利召開,特招聘了3萬名志愿者.某部門為了了解志愿者的基本情況,調(diào)查了其中100名志愿者的年齡,得到了他們年齡的中位數(shù)為34歲,年齡在歲內(nèi)的人數(shù)為15人,并根據(jù)調(diào)查結(jié)果畫出如所示的頻率分布直方圖:
(1)求,的值并估算出志愿者的平均年齡(同一組的數(shù)據(jù)用該組區(qū)間的中點值代表);
(2)本次軍運(yùn)會志愿者主要通過直接到武漢軍運(yùn)會執(zhí)委會志愿者部現(xiàn)場報名和登錄第七屆世界軍運(yùn)會官網(wǎng)報名,即現(xiàn)場和網(wǎng)絡(luò)兩種方式報名調(diào)查.這100位志愿者的報名方式部分?jǐn)?shù)據(jù)如下表所示,完善下面的表格,通過計算說明能否在犯錯誤的概率不超過0.001的前提下,認(rèn)為“選擇哪種報名方式與性別有關(guān)系”?
男性 | 女性 | 總計 | |
現(xiàn)場報名 | 50 | ||
網(wǎng)絡(luò)報名 | 31 | ||
總計 | 50 |
參考公式及數(shù)據(jù):,其中.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角梯形中,AB∥CD,,且.現(xiàn)以為一邊向梯形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,如圖2.
(Ⅰ)求證:BC⊥平面DBE;
(Ⅱ)求點D到平面BEC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校打算在長為1千米的主干道一側(cè)的一片區(qū)域內(nèi)臨時搭建一個強(qiáng)基計劃高校咨詢和宣傳臺,該區(qū)域由直角三角形區(qū)域(為直角)和以為直徑的半圓形區(qū)域組成,點(異于,)為半圓弧上一點,點在線段上,且滿足.已知,設(shè),且.初步設(shè)想把咨詢臺安排在線段,上,把宣傳海報懸掛在弧和線段上.
(1)若為了讓學(xué)生獲得更多的咨詢機(jī)會,讓更多的省內(nèi)高校參展,打算讓最大,求該最大值;
(2)若為了讓學(xué)生了解更多的省外高校,貼出更多高校的海報,打算讓弧和線段的長度之和最大,求此時的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線上一點到焦點的距離.
(1)求拋物線的方程;
(2)過點引圓的兩條切線,切線與拋物線的另一交點分別為,線段中點的橫坐標(biāo)記為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】折紙是一項藝術(shù),可以折出很多數(shù)學(xué)圖形.將一張圓形紙片放在平面直角坐標(biāo)系中,圓心B(-1,0),半徑為4,圓內(nèi)一點A為拋物線的焦點.若每次將紙片折起一角,使折起部分的圓弧的一點始終與點A重合,將紙展平,得到一條折痕,設(shè)折痕與線段B的交點為P.
(Ⅰ)將紙片展平后,求點P的軌跡C的方程;
(Ⅱ)已知過點A的直線l與軌跡C交于R,S兩點,當(dāng)l無論如何變動,在AB所在直線上存在一點T,使得所在直線一定經(jīng)過原點,求點T的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,并在兩坐標(biāo)系中取相同的長度單位.已知曲線C的極坐標(biāo)方程為,直線l的參數(shù)方程為,(t為參數(shù)).
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C交于A,B兩點,,且,求值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com