【題目】函數(shù) 處取得極值.

1)求 的單調(diào)區(qū)間;

2)若 在定義域內(nèi)有兩個不同的零點,求實數(shù) 的取值范圍.

【答案】(1);(2).

【解析】試題分析:(Ⅰ)求出函數(shù)的導數(shù),計算f′(1),求出a的值,從而求出函數(shù)的單調(diào)區(qū)間即可;

(Ⅱ)問題轉(zhuǎn)化為f(x)=m+1在(0,+∞)內(nèi)有兩個不同的根,結(jié)合函數(shù)的圖象求出m的范圍即可.

試題解析:

(1) ,

,解得 ,

時, ,

,令 ,解得 ;

,解得

所以 處取得極小值, 的單調(diào)遞增區(qū)間為 ,單調(diào)遞減區(qū)間為

(2) 內(nèi)有兩個不同的零點,

可轉(zhuǎn)化為 內(nèi)有兩個不同的根,

也可轉(zhuǎn)化為 的圖象有兩個不同的交點,

由(1)知, 上單調(diào)遞減,在 上單調(diào)遞增, ,

由題意得,

時, ;

時,

時,顯然 (或者舉例:當 , ).

如圖,

由圖象可知, ,即

可得

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示是某企業(yè)2010年至2016年污水凈化量(單位: 噸)的折線圖.

注: 年份代碼1-7分別對應(yīng)年份2010-2016.

(1)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請用相關(guān)系數(shù)加以說明;

(2)建立關(guān)于的回歸方程,預測年該企業(yè)污水凈化量;

(3)請用數(shù)據(jù)說明回歸方程預報的效果.

附注: 參考數(shù)據(jù):;

參考公式:相關(guān)系數(shù),回歸方程中斜率和截距的最。

二乘法估汁公式分別為;

反映回歸效果的公式為:,其中越接近于,表示回歸的效果越好.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè),點軸上,點軸上,且,.

(1)當點軸上運動時,求點的軌跡的方程;

(2)設(shè)點是軌跡上的動點,點軸上,圓內(nèi)切于,求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了研究家用轎車在高速公路上的車速情況,交通部門對100名家用轎車駕駛員進行調(diào)查,得到其在高速公路上行駛時的平均車速情況為:在55名男性駕駛員中,平均車速超過100km/h的有40人,不超過100km/h的有15人.在45名女性駕駛員中,平均車速超過100km/h的有20人,不超過100km/h的有25人.

(1)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認為平均車速超過100km/h的人與性別有關(guān).

平均車速超過

100km/h人數(shù)

平均車速不超過

100km/h人數(shù)

合計

男性駕駛員人數(shù)

女性駕駛員人數(shù)

合計

(2)以上述數(shù)據(jù)樣本來估計總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機抽取3輛,記這3輛車中駕駛員為男性且車速超過100km/h的車輛數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列和數(shù)學期望.

參考公式與數(shù)據(jù): ,其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一塊扇形鐵皮OAB,∠AOB=60°,OA=72cm,要剪下來一個扇環(huán)形ABCD,作圓臺容器的側(cè)面,并且在余下的扇形OCD內(nèi)能剪下一塊與其相切的圓形使它恰好作圓臺容器的下底面(大底面).試求:

(1)AD應(yīng)取多長?

(2)容器的容積為多大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).它與曲線交于兩點.

(1)求的長;

(2)在以為極點, 軸的正半軸為極軸建立極坐標系,設(shè)點的極坐標為,求點到線段中點的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市需對某環(huán)城快速車道進行限速,為了調(diào)研該道路車速情況,于某個時段隨機對輛車的速度進行取樣,測量的車速制成如下條形圖:

經(jīng)計算:樣本的平均值,標準差,以頻率值作為概率的估計值.已知車速過慢與過快都被認為是需矯正速度,現(xiàn)規(guī)定車速小于或車速大于是需矯正速度.

(1)從該快速車道上所有車輛中任取個,求該車輛是需矯正速度的概率;

(2)從樣本中任取個車輛,求這個車輛均是需矯正速度的概率;

(3)從該快速車道上所有車輛中任取個,記其中是需矯正速度的個數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某幾何體的三視圖如圖所示,P是正方形ABCD對角線的交點,GPB的中點.

(1)根據(jù)三視圖,畫出該幾何體的直觀圖.

(2)在直觀圖中,①證明:PD∥平面AGC;

②證明:平面PBD⊥平面AGC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商品上市30天內(nèi)每件的銷售價格元與時間天函數(shù)關(guān)系是

該商品的日銷售量件與時間天函數(shù)關(guān)系是

.(1)求該商品上市第20天的日銷售金額;

(2)求這個商品的日銷售金額的最大值.

查看答案和解析>>

同步練習冊答案