分析 (1)根據(jù)題意-(x+1)2+a(x+1)>2(-2+ax)對(duì)一切[3,+∞)恒成立,轉(zhuǎn)化為a<$\frac{{x}^{2}-2x-1}{x-1}$=$\frac{{(x-1)}^{2}-2}{x-1}$=(x-1)-$\frac{2}{x-1}$,利用基本不等式求解即可.
(2)分類(lèi)討論f得出f(x)在[0,+∞)上單調(diào)遞增,m>0且mn•2n-n>mn-1•2n-(n-1),即m≥2.
解答 解:(1)由題意可知:f(x+1)>2f(x),
即-(x+1)2+a(x+1)>2(-2+ax)對(duì)一切[3,+∞)恒成立,
(x-1)a<x2-2x-1,
∵x∈[3,+∞)
∴a<$\frac{{x}^{2}-2x-1}{x-1}$=$\frac{{(x-1)}^{2}-2}{x-1}$=(x-1)-$\frac{2}{x-1}$,
令x-1=t,則t∈[2,+∞),
g(x)=t-$\frac{2}{t}$ 在[2,+∞)上單調(diào)遞增,
∴g(t)min=g(2)=1,
∴a<1.
(2)∵x∈[0,1)時(shí),f(x)=2x,
∴當(dāng)x∈[1,2)時(shí),f(x)=mf(x-1)=m•2x-1,
當(dāng)x∈[n,n+1]時(shí),f(x)=mf(x-1)=m2f(x-2)=…=mnf(x-n)=mn•2x-n,
即x∈[n,n+1)時(shí),f(x)=mn•2x-n,n∈N*,
∵f(x)在[0,+∞)上單調(diào)遞增,
∴m>0且mn•2n-n>mn-1•2n-(n-1),即m≥2.
點(diǎn)評(píng) 本題綜合考查了函數(shù)的性質(zhì),推理變形能力,分類(lèi)討論的思想,屬于難題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2015 | B. | 2014 | C. | 4029 | D. | 4028 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com