14.若{an}是等差數(shù)列,首項(xiàng)a1>0,a2014+a2015>0,a2014•a2015<0,則使前n項(xiàng)和Sn<0成立的最小正整數(shù)n是( 。
A.2015B.2014C.4029D.4028

分析 由已知可得:a2014>0,a2015<0,可得S4029=4029×a2015<0,即可得出.

解答 解:∵首項(xiàng)a1>0,a2014+a2015>0,a2014•a2015<0,
∴a2014>0,a2015<0,
∴S4029=$\frac{4029({a}_{1}+{a}_{4029})}{2}$=4029×a2015<0,
則使前n項(xiàng)和Sn<0成立的最小正整數(shù)n是4029.
故選:C.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在書(shū)柜的某一層上原來(lái)共有5本不同的書(shū),如果保持原有書(shū)的相對(duì)順序不變,再插進(jìn)去3本不同的書(shū),那么共有336種不同的插入法.(用數(shù)字回答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若二項(xiàng)式x(2x-$\frac{a}{x}$)7的展開(kāi)式中$\frac{1}{{x}^{2}}$的系數(shù)是84,則實(shí)數(shù)a=( 。
A.2B.-$\root{5}{4}$C.-1D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.曲線y=$\frac{1}{x}$(x>0)在點(diǎn)P(x0,y0)處的切線為l.若直線l與x,y軸的交點(diǎn)分別為A,B,則△OAB(其中O為坐標(biāo)原點(diǎn))的面積為( 。
A.4+2$\sqrt{2}$B.2$\sqrt{2}$C.2D.5+2$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)y=f(x),x∈D,如果對(duì)于定義域D內(nèi)的任意實(shí)數(shù)x,對(duì)于給定的非零常數(shù)m,總存在非零常數(shù)T,恒有f(x+T)>mf(x)成立,則稱函數(shù)f(x)是D上的m級(jí)類增周期函數(shù),周期為T,若恒有f(x+T)=mf(x)成立,則稱函數(shù)f(x)是D上的m級(jí)類周期函數(shù),周期為T.
(1)已知函數(shù)f(x)=-x2+ax是[3,+∞)上的周期為1的2級(jí)類增周期函數(shù),求實(shí)數(shù)a的取值范圍;
(2)已知T=1,y=f(x)是[0,+∞)上的m級(jí)類周期函數(shù),且y=f(x)是[0,+∞)上的單調(diào)增函數(shù),當(dāng)x∈[0,1)時(shí),f(x)=2x,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.過(guò)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)F1作圓x2+y2=a2的切線,并延長(zhǎng)交雙曲線右支于點(diǎn)P,過(guò)右焦點(diǎn)F2作圓的切線交F1P于M,且M為F1P的中點(diǎn),則雙曲線的離心率e∈( 。
A.(1,$\sqrt{2}$)B.($\sqrt{2}$,$\sqrt{3}$)C.($\sqrt{3},2$)D.(2,$\sqrt{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知?jiǎng)狱c(diǎn)P(x,y)在雙曲線x2-$\frac{{y}^{2}}{4}$=1的漸近線向左平移一個(gè)單位所得直線和x-y+3=0圍成的區(qū)域內(nèi)(含邊界),則z=$\frac{x+2y-4}{x-2}$的范圍為(  )
A.[$\frac{9}{11}$,$\frac{5}{3}$]B.[-5,$\frac{5}{3}$]C.[-5,$\frac{9}{11}$]D.[-3,$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角為30°,$\overrightarrow{a}$=(1,0),|$\overrightarrow$|=$\sqrt{3}$,則|$\overrightarrow{a}$-$\overrightarrow$|=( 。
A.2$\sqrt{3}$B.1C.$\sqrt{5}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如果f(x)是定義在R上的奇函數(shù),那么下列函數(shù)中,一定為偶函數(shù)的是( 。
A.y=x+f(x)B.y=xf(x)C.y=x2+f(x)D.y=x2f(x)

查看答案和解析>>

同步練習(xí)冊(cè)答案