函數(shù)f(x)=
x+3
+
1
x
的定義域是
 
考點:函數(shù)的定義域及其求法
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得
x+3≥0
x≠0
,解出可得函數(shù)定義域.
解答: 解:要使函數(shù)f(x)有意義,
須有
x+3≥0
x≠0
,解得x≥-3且x≠0,
∴函數(shù)的定義域是[-3,0)∪(0,+∞).
故答案為[-3,0)∪(0,+∞)
點評:本題考查函數(shù)定義域的求解,屬基礎(chǔ)題,要求:開偶次方根被開方數(shù)要大于等于零;分母不為零.注意定義域的表示形式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2-2(a+1)x+3在區(qū)間(-∞,3]上是增函數(shù),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)y=
1-x
2x+5
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)計算:(2
7
9
)
1
2
+(lg5)0+(
27
64
)-
1
3
;
(2)解方程:log3(6x-9)=3;
(3)解不等式:(
1
3
)x2-8
>3-2x;
(4)求函數(shù)y=log2(x2-4x+7)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式x2-(m+1)x+t<0的解集為{x|1<x<2,x∈R},
(1)求m,t的值;
(2)若函數(shù)f(x)=-x2+ax+4在區(qū)間(-∞,1]上遞增,在區(qū)間(1,+∞)上遞減,求關(guān)于x的不等式loga(-mx2+3x+2-t)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|m<x<m+
3
4
},B={x|n-
1
3
<x<n},Q={x|0<x<1},且A⊆Q,B⊆Q,記“b-a”為集合{x|a<x<b}的長度,則A∩B的長度的最小值是( 。
A、
1
12
B、
1
4
C、
1
3
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的定義域:f(x)=
x+1
+
1
2-x
,定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={4,5,6,8},B={3,5,7,8},則A∪B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從原點向圓x2+y2-12y+27=0作兩條切線,則這兩條切線的夾角的大小為
 

查看答案和解析>>

同步練習(xí)冊答案