15.已知命題p:若a>b>0,則ax>bx恒成立;命題q:在等差數(shù)列{an}中,m+n=p+q是an+am=ap+aq的充分不必要條件(m,n,p,q∈N*).則下面選項(xiàng)中真命題是( 。
A.(¬p)∧(¬q)B.(¬p)∨(¬q)C.p∨(¬q)D.p∧q

分析 分別判斷命題p,q的真假,進(jìn)而結(jié)合復(fù)合命題真假判斷的真值表,可得答案.

解答 解:∵a>b>0,當(dāng)x<0時(shí),ax≤bx;
故命題p為假命題;
在等差數(shù)列{an}中,若m+n=p+q,則an+am=ap+aq,
但在常數(shù)列中,an+am=ap+aq⇒m+n=p+q不成立,
即在等差數(shù)列{an}中,m+n=p+q是an+am=ap+aq的充分不必要條件(m,n,p,q∈N*).
故命題q為真命題,
則(¬p)∧(¬q),p∨(¬q),p∧q均為假命題,
(¬p)∨(¬q)為真命題,
故選:B

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了函數(shù)的單調(diào)性,等差數(shù)列的性質(zhì),復(fù)合命題,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知在△ABC中,B、C坐標(biāo)分別為B (0,-4),C (0,4),且|AB|+|AC|=12,頂點(diǎn)A的軌跡方程是( 。
A.$\frac{x^2}{36}$+$\frac{y^2}{20}$=1(x≠0)B.$\frac{x^2}{20}$+$\frac{y^2}{36}$=1(x≠0)
C.$\frac{x^2}{6}$+$\frac{y^2}{20}$=1(x≠0)D.$\frac{x^2}{20}$+$\frac{y^2}{6}$=1(x≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知直線的極坐標(biāo)方程為3ρcosθ-4ρsinθ=3,求點(diǎn)P(2,$\frac{3π}{2}$)到這條直線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=4x-m•2x+1+m2-3,且存在實(shí)數(shù)x,使f(-x)=-f(x),則實(shí)數(shù)m的取值范圍是$[1-\sqrt{3},2\sqrt{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若以連續(xù)兩次骰子分別得到的點(diǎn)數(shù)m,n作為點(diǎn)P的橫、縱坐標(biāo),則點(diǎn)P在直線x+y=5左下方的概率為(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{12}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)$f(x)=\left\{\begin{array}{l}|{l}o{g_{\frac{1}{2}}}x|,0<x≤4\\|6-x|,x>4\end{array}\right.$存在a<b<c<d,使f(a)=f(b)=f(c)=f(d),則$\frac{c+d}{2ab}$的值為( 。
A.1B.3
C.6D.與a,b,c,d的值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知圓C1:x2+y2=9與圓C2:(x-3)2+(y-4)2=r2(r>0)相外切.
(1)若圓C2關(guān)于直線l:$\frac{ax}{9}-\frac{by}{12}$=1對(duì)稱,求由點(diǎn)(a,b)向圓C2所作的切線長(zhǎng)的最小值;
(2)若直線l1過(guò)點(diǎn)A(1,0)且與圓C2相交于P,Q兩點(diǎn),求△C2PQ面積的最大值,并求此時(shí)直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若函數(shù)f(x)滿足:在定義域D內(nèi)存在實(shí)數(shù)x0,使得f(x0+1)=f(x0)+f(1)成立,
則稱函數(shù)f(x)為“1的飽和函數(shù)”.給出下列五個(gè)函數(shù):
①f(x)=2x;②f(x)=$\frac{1}{x}$;③$f(x)=lg({x^2}-\frac{1}{2})$;④$f(x)=\frac{2x-1}{e^x}$.
其中是“1的飽和函數(shù)”的所有函數(shù)的序號(hào)為( 。
A.①②④B.②③④C.①②③D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.a(chǎn),b中至少有一個(gè)不為零的充要條件是( 。
A.ab=0B.ab>0C.a2+b2=0D.a2+b2>0

查看答案和解析>>

同步練習(xí)冊(cè)答案