【題目】如圖甲所示, 是梯形
的高,
,
,
,先將梯形
沿
折起如圖乙所示的四棱錐
,使得
,點
是線段
上一動點.
(1)證明: ;
(2)當(dāng)時,求
與平面
所成角的正弦值.
【答案】(1)見解析;(2) 角的正弦值為 .
【解析】試題分析:(1)由勾股定理可證,又
,由直線與平面垂直的判定定理,
可證以平面
,所以
,進(jìn)而證明
平面
(2)因為,所以點
到平面
的距離等于點
到平面
的距離的一半
作 交
于點
,連接
、
,可求出
,作
交
于
,
求得,而
,而
,可知
平面
再由點
到平面
距離為
,
點
到平面
的距離為
,
而,所以
與平面
所成角的正弦值為
.
試題解析:(1)因為是梯形
的高,
,
所以
因為,
,
可得,
如圖乙所示, ,
,
,
所以有,所以
而,
,
所以平面
,所以
又,所以
、
、
兩兩垂直.
所以平面
(2)因為,
所以點到平面
的距離等于點
到平面
的距離的一半
作交
于點
,連接
、
,
則,
作交
于
,
則,而
,
而,由
,
平面
可知平面
再由點
到平面
距離為
,
點
到平面
的距離為
,
而
所以與平面
所成角的正弦值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是公差不為零的等差數(shù)列,
且
成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于的一元二次方程
.
(1)若是從0,1,2,3四個數(shù)中任取的一個數(shù),
是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率;
(2)若時從區(qū)間
上任取的一個數(shù),
是從區(qū)間
上任取的一個數(shù),求上述方程有實根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】.(本小題滿分12分)
如圖,四棱錐P—ABCD中,底面ABCD是邊長為的正方形E,F分別為PC,BD的中點,側(cè)面PAD⊥底面ABCD,且PA=PD=
AD.
(Ⅰ)求證:EF//平面PAD;
(Ⅱ)求三棱錐C—PBD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知橢圓:
,其中
,
,
分別為其左,右焦點,點
是橢圓
上一點,
,且
.
(1)當(dāng),
,且
時,求
的值;
(2)若,試求橢圓
離心率
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱錐,已知
,
(1)求此三棱錐內(nèi)切球的半徑.
(2)若是側(cè)面
上一點,試在面
上過點
畫一條與棱
垂直的線段,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x+2﹣x ,
(1)判斷函數(shù)的奇偶性;
(2)用函數(shù)單調(diào)性定義證明:f(x)在(0,+∞)上為單調(diào)增函數(shù);
(3)若f(x)=52﹣x+3,求x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有道數(shù)學(xué)題,其中
道選擇題,
道填空題,小明從中任取
道題,求:
(1)所取的道題都是選擇題的概率;
(2)所取的道題不是同一種題型的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(
是大于
的常數(shù))的左、右頂點分別為
、
,點
是橢圓上位于
軸上方的動點,直線
、
與直線
分別交于
、
兩點(設(shè)直線
的斜率為正數(shù)).
(Ⅰ)設(shè)直線、
的斜率分別為
,
,求證
為定值.
(Ⅱ)求線段的長度的最小值.
(Ⅲ)判斷“”是“存在點
,使得
是等邊三角形”的什么條件?(直接寫出結(jié)果)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com