直線
x=1+2t
y=1-t
(t∈R)
與曲線ρ=2cosθ相交,截得的弦長(zhǎng)為
 
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程,直線的參數(shù)方程
專題:選作題,坐標(biāo)系和參數(shù)方程
分析:將極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程,將直線的參數(shù)方程轉(zhuǎn)化為一般方程,利用直線與圓的位置關(guān)系,構(gòu)造直角三角形運(yùn)用勾股定理,即可求解.
解答: 解:∵曲線的極坐標(biāo)方程ρ=2cosθ,化為ρ2=2ρcosθ,
則化成直角坐標(biāo)方程為x2+y2-2x=0,即(x-1)2+y2=1,
∴(x-1)2+y2=1表示圓心為(1,0),半徑r=1的圓,
直線為
x=1+2t
y=1-t
(t∈R)
,則直線的一般方程為x+2y-3=0,
∴圓心(1,0)到直線x+2y-3=0的距離d=
|1+2×0-3|
5
=
2
5
5

設(shè)弦長(zhǎng)為l,則根據(jù)勾股定理可得,d2+(
1
2
l
2=r2,
故(
2
5
5
2+(
1
2
l
2=1,解得l=
2
5
5
,
∴截得的弦長(zhǎng)為
2
5
5

故答案為:
2
5
5
點(diǎn)評(píng):本題考查了極坐標(biāo)方程和直角坐標(biāo)方程的互化,利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得.考查了直線與圓的位置關(guān)系,求直線被圓所截得的弦長(zhǎng)問題,要注意運(yùn)用弦長(zhǎng)的一半,半徑,弦心距構(gòu)成的直角三角形求解.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,圓O的參數(shù)方程為
x=-
2
+rcosθ
y=-1+rsinθ
,(θ為參數(shù),r>0)以O(shè)為極點(diǎn),x軸正半軸為極軸,并取相同的單位長(zhǎng)度建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2

(Ⅰ)寫出直線l和圓O的普通方程;
(Ⅱ)并求出r為何值時(shí),直線l與圓O相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
)+cos2x
(1)求f(x)的最小正周期T;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
b
滿足|
b
|=2,
a
b
的夾角為120°,則|
b
+t
a
|(t∈R)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}為等比數(shù)列,若a4•a6=10,則a2•a8=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果隨機(jī)變量X~B(100,0.2),那么D(4X+3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)命題中:(1)a+b≥2
ab
(2)x∈(0,π),sin2x+
4
sin2x
最小值為4;(3)設(shè)x,y都是正數(shù),若
1
x
+
9
y
=1,則x+y的最小值是12;(4)若|x-2|<ε,|y-2|<ε,則|x-y|<2ε.其中所有真命題序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

獨(dú)立工作的兩套報(bào)警系統(tǒng)遇危險(xiǎn)報(bào)警的概率均為0.4,則遇危險(xiǎn)時(shí)至少有一套報(bào)警系統(tǒng)報(bào)警的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在(
3x
-
1
2
3x
n的展開式中,第6項(xiàng)為常數(shù)項(xiàng),則展開式中任取一項(xiàng),所取項(xiàng)為有理項(xiàng)的概率P=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案