設(shè)函數(shù)f(x)=sinωxcosωx-
3
sin2ωx+a
(ω>0,a∈R),且f(x)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為
π
6

(1)求ω的值;
(2)如果f(x)在區(qū)間[-
π
3
, 
6
]
上的最小值為
3
,求a的值.
(1)∵sinωxcosωx=
1
2
sin2ωx,sin2ωx=
1
2
(1-cos2ωx)
∴f(x)=
1
2
sin2ωx-
3
2
(1-cos2ωx)+a=sin(2ωx+
π
3
)+a-
3
2

∵f(x)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為
π
6

∴當(dāng)x=
π
6
時(shí),2ωx+
π
3
=
π
2
+2kπ,(k∈Z),即
π
3
ω+
π
3
=
π
2
+2kπ,(k∈Z),可得
π
3
ω=
π
6
+2kπ,(k∈Z)
結(jié)合ω>0,得整數(shù)k=0時(shí),ω=
1
2

(2)由(1),得f(x)=sin(x+
π
3
)+a-
3
2

∵x∈[-
π
3
, 
6
]
,得x+
π
3
[0,
6
]

∴當(dāng)x=
6
時(shí),x+
π
3
=
6
,此時(shí)f(x)有最小值-
1
2
+a-
3
2
=
3

由此可得:a=
3
3
+1
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|sin(x+
π
3
)|(x∈R)
,則f(x)( 。
A、在區(qū)間[
3
,
6
]
上是增函數(shù)
B、在區(qū)間[-π,-
π
2
]
上是減函數(shù)
C、在區(qū)間[
π
8
,
π
4
]
上是增函數(shù)
D、在區(qū)間[
π
3
,
6
]
上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,∠A,∠B,∠C所對(duì)的邊分別為a,b,c,若
cosA
cosB
=
b
a
且sinC=cosA
(Ⅰ)求角A、B、C的大;
(Ⅱ)設(shè)函數(shù)f(x)=sin(2x+A)+cos(2x-
C
2
)
,求函數(shù)f(x)的單調(diào)遞增區(qū)間,并指出它相鄰兩對(duì)稱軸間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•寶雞模擬)設(shè)函數(shù)f(x)=sin(x+
π
6
)+2sin2
x
2

(1)求f(x)的最小正周期;
(2)記△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若f(A)=1,a=1,c=
3
,求b值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+
π
3
)
,則下列結(jié)論正確的是( 。
①f(x)的圖象關(guān)于直線x=
π
3
對(duì)稱
②f(x)的圖象關(guān)于點(diǎn)(
π
4
,0)
對(duì)稱
③f(x)的圖象向左平移
π
12
個(gè)單位,得到一個(gè)偶函數(shù)的圖象
④f(x)的最小正周期為π,且在[0,
π
6
]
上為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(ωx+?)(ω>0,-
π
2
<?<
π
2
)
,給出以下四個(gè)論斷:
①它的圖象關(guān)于直線x=
π
12
對(duì)稱;
②它的圖象關(guān)于點(diǎn)(
π
3
,0)對(duì)稱;
③它的最小正周期是π;
④在區(qū)間[-
π
6
,0
]上是增函數(shù).
以其中兩個(gè)論斷作為條件,余下論斷作為結(jié)論,一個(gè)正確的命題:
條件
3
,結(jié)論
A、①②⇒③④
B、③④⇒①②
C、②④⇒①③
D、①③⇒②④

查看答案和解析>>

同步練習(xí)冊(cè)答案