分析 (1)計算a1=0,故a1•a2•a3=0;
(2)根據(jù)對數(shù)性質(zhì)得出an=1•0+2•1+22•2+23•3+…+2n-1•(n-1),使用錯位相減法求出an,得出a的值.
解答 解:(I)a1=[log21]=0,a2=[log21]+[log22]+[log23]=0+1+1=2,
a3=[log21]+[log22]+[log23]+…+[log27]=0+1+1+2+2+2+2=10.
∴a1•a2•a3=0.
(II)當(dāng)2n-1≤x≤2n-1時,[log2x]=n-1.
∴[log22n-1]+[log22n-1+1]+[log22n-1+2]+…+[log2(2n-1)]=(n-1)(2n-1-2n-1+1)=2n-1(n-1).
∴an=1•0+2•1+22•2+23•3+…+2n-1•(n-1),①
∴2an=22•1+23•2+24•3+…+2n•(n-1),②
②-①得:an=-22-23-24-…-2n-1+2n•(n-1)-2
=-$\frac{{2}^{2}(1-{2}^{n-2})}{1-2}$+2n•(n-1)-2
=2n•(n-2)+2.
又an=(n-2)•2n+a,
∴a=2.
點(diǎn)評 本題考查了對數(shù)的運(yùn)算性質(zhì),數(shù)列求和的應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | sin3>sin2 | B. | cos3>cos2 | C. | cos(-$\frac{2}{5}$π)<cos(-$\frac{1}{4}$π) | D. | sin$\frac{12}{5}$π<sin$\frac{17}{4}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 8 | C. | 2 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y大大增大,x一定變大,z可能不變 | B. | y大大增大,x可能不變,z變大 | ||
C. | y大大增大,x可能不變,z也不變 | D. | y可能不變,x可能不變,z可能不變 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com