18.已知x,y的取值如表:
x2345
y2.23.84.55.5
從散點(diǎn)圖分析,y與x線性相關(guān),且回歸方程為$\widehat{y}$=1.46x+a,則實(shí)數(shù)a的值為-1.11.

分析 計(jì)算樣本中心,代入回歸方程即可解出a.

解答 解:$\overline{x}$=$\frac{2+3+4+5}{4}=3.5$,$\overline{y}=\frac{2.2+3.8+4.5+5.5}{4}$=4.
∴4=1.46×3.5+a,解得a=-1.11.
故答案為:-1.11.

點(diǎn)評(píng) 本題考查了線性回歸方程經(jīng)過樣本中心的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)等差數(shù)列(an}中,若S7=14,Sn=120,an-3=10,則n的值為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某幾何體的三視圖如圖所示,則這個(gè)幾何體最長的一條棱長(  )
A.2$\sqrt{6}$B.2$\sqrt{5}$C.4D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.橢圓C1方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1,雙曲線C2的方程為$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1,C1,C2的離心率之積為$\frac{\sqrt{3}}{2}$,則C2的漸近線方程為y=$±\frac{\sqrt{2}}{2}x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):
單價(jià)x元456789
銷量y元908483807568
由表中數(shù)據(jù),求得線性回歸方程為$\hat y=-4x+a$,若從這些樣本點(diǎn)中任取一點(diǎn),則它在回歸直線下方的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的焦距為2c,右頂點(diǎn)為A,拋物線x2=2py(p>0)的焦點(diǎn)為F,若雙曲線截拋物線的準(zhǔn)線所得線段長為2c,且|FA|=c,求雙曲線的漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.曲線y=ex在點(diǎn)(0,1)處的切線與坐標(biāo)軸所圍三角形的面積為( 。
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的實(shí)軸長為2$\sqrt{3}$,一個(gè)焦點(diǎn)的坐標(biāo)為$(-\sqrt{5},0)$.
(1)求雙曲線的方程;
(2)若斜率為2的直線l交雙曲線C交于A,B兩點(diǎn),且|AB|=4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)F是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn),過點(diǎn)F向C的一條漸近線引垂線,垂足為A,交另一條漸近線于點(diǎn)B.若2$\overrightarrow{FA}$=$\overrightarrow{FB}$,則雙曲線C的離心率是2.

查看答案和解析>>

同步練習(xí)冊(cè)答案