6.橢圓C1方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1,雙曲線C2的方程為$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1,C1,C2的離心率之積為$\frac{\sqrt{3}}{2}$,則C2的漸近線方程為y=$±\frac{\sqrt{2}}{2}x$.

分析 求出橢圓與雙曲線的離心率,根據(jù)離心率之積的關(guān)系,然后推出a,b關(guān)系,即可求解雙曲線的漸近線方程.

解答 解:a>b>0,橢圓C1的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,C1的離心率為:$\frac{\sqrt{{a}^{2}-^{2}}}{a}$,
雙曲線C2的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,C2的離心率為:$\frac{\sqrt{{a}^{2}+^{2}}}{a}$,
∵C1與C2的離心率之積為$\frac{\sqrt{3}}{2}$,
∴$\frac{\sqrt{{a}^{2}-^{2}}}{a}•\frac{\sqrt{{a}^{2}+^{2}}}{a}=\frac{\sqrt{3}}{2}$,
∴${(\frac{a})}^{2}$=$\frac{1}{2}$,$\frac{a}$=$\frac{\sqrt{2}}{2}$,
C2的漸近線方程為:y=$±\frac{\sqrt{2}}{2}x$,
故答案為:y=$±\frac{\sqrt{2}}{2}x$

點(diǎn)評(píng) 本題考查橢圓與雙曲線的基本性質(zhì),離心率以及漸近線方程的求法,基本知識(shí)的考查,根據(jù)橢圓和雙曲線離心率之間的關(guān)系建立方程是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=sin(2x+$\frac{π}{3}$)•cos(x-$\frac{π}{6}$)+cos(2x+$\frac{π}{3}$)•sin($\frac{π}{6}$-x)的圖象的一條對(duì)稱軸方程是( 。
A.x=$\frac{π}{4}$B.x=$\frac{π}{2}$C.x=πD.x=$\frac{3π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知直線l1:18x+6y-17=0和l2:5x+10y-9=0,求直線l1和l2的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.判斷點(diǎn)M(2,-1),N(-4,0),Q(1,2)是否在函數(shù)y=3x2-2x+1的圖象上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的一個(gè)焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,橢圓E上一點(diǎn)到其右焦點(diǎn)F的最短距離為$\sqrt{2}-1$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)記橢圓E的上頂點(diǎn)為C,是否存在直線l交橢圓E于A,B兩點(diǎn),使點(diǎn)F恰好為△ABC的垂心?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知過點(diǎn)P(1,1)的直線L與雙曲線${x^2}-\frac{y^2}{4}=1$只有一個(gè)公共點(diǎn),則直線L的斜率k=$\frac{5}{2}$或-2或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知x,y的取值如表:
x2345
y2.23.84.55.5
從散點(diǎn)圖分析,y與x線性相關(guān),且回歸方程為$\widehat{y}$=1.46x+a,則實(shí)數(shù)a的值為-1.11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)a、b是關(guān)于t的方程t2cosθ-tsinθ=0的兩個(gè)不相等實(shí)根,則過A(a,a2)、B(b,b2)兩點(diǎn)的直線與雙曲線$\frac{x^2}{{{{cos}^2}θ}}$-$\frac{y^2}{{{{sin}^2}θ}}$=1的公共點(diǎn)個(gè)數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.關(guān)于x的方程x3-px+2=0有三個(gè)不同實(shí)數(shù)解,則實(shí)數(shù)p的取值范圍為(3,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案