(本小題滿分12分)

全球金融危機,波及中國股市,甲、乙、丙、丁四人打算趁目前股市低迷之際“抄底”,若四人商定在圈定的6只股票中各自隨機購買一只(假定購買時每支股票的基本情況完全相同).

   (1)求甲、乙、丙、丁四人恰好買到同一只股票的概率;

   (2)求甲、乙、丙、丁四人中至多有兩人買到同一只股票的概率;

   (3)由于中國政府采取了積極的應對措施,股市漸趨“回暖”.若某人今天按上一交易日的收盤價20元/股,買入某只股票1000股,且預計今天收盤時,該只股票比上一交易日的收盤價上漲10%(漲停)的概率為0.6.持平的概率為0.2,否則將下跌10%(跌停),求此人今天獲利的數(shù)學期望(不考慮傭金、印花稅等交易費用).

(Ⅰ)    (Ⅱ)   (Ⅲ)800


解析:

(1)四人恰好買到同一只股票的概率------4分

   (2)解法一:四人中有兩人買到同一只股票的概率

四人中每人買到不同的股票的概承率所以四人中至多有兩人買到同一只股票的概率…………8分

解法二:四人中有三人恰好買到同一只股票的概率

所以四人中至多有兩人買到同一只股票的概率

2

0

P

0.6

0.2

0.2

   (3)每股今天獲利的分布列為:

所以,1000股股票在今日交易中獲利的數(shù)學期望為

…………12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產A,B兩種產品,根據(jù)市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案