【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知2ccosA+a=2b
(1)求角C的值;
(2)若c=2,且△ABC的面積為 ,求a,b.
【答案】
(1)解:∵2ccosA+a=2b,
∴2sinCcosA+sinA=2sinB,
∴2sinCcosA+sinA=2sin(A+C),
即2sinCcosA+sinA=2sinAcosC+2cosAsinC,
∴sinA=2sinAcosC,
∴ ,
又∵C是三角形的內(nèi)角,
∴
(2)解:∵ ,∴ ,∴ab=4,
又∵c2=a2+b2﹣2abcosC,
∴4=(a+b)2﹣2ab﹣ab,
∴a+b=4,
∴a=b=2.
【解析】(1)利用兩角和的正弦函數(shù)公式,正弦定理,三角形內(nèi)角和定理化簡已知等式可得sinA=2sinAcosC,由于sinA≠0,解得 ,又C是三角形的內(nèi)角,即可得解C的值.(2)利用三角形面積公式可求ab=4,又由余弦定理可解得a+b=4,聯(lián)立即可解得a,b的值.
【考點精析】掌握正弦定理的定義和余弦定理的定義是解答本題的根本,需要知道正弦定理:;余弦定理:;;.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一解三角形的題目因紙張破損,有一條件不清,具體如下:在△ABC中,已知a= ,2cos2 =( ﹣1)cosB,c= , 求角A,若該題的答案是A=60°,請將條件補充完整.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子中裝有5張編號依次為1,2,3,4,5的卡片,這5張卡片除號碼外完全相同,現(xiàn)進行有放回的連續(xù)抽取兩次,每次任意地取出一張卡片.
(1)求出所有可能結(jié)果數(shù),并列出所有可能結(jié)果;
(2)求條件“取出卡片的號碼之和不小于7或小于5”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從吉安市某校高一的1000名學(xué)生隨機抽取50名分析期中考試數(shù)學(xué)成績,被抽取學(xué)生成績?nèi)拷橛?5分和135分之間,將抽取的成績分成八組:第一組[95,100],第二組[100,105],…,第八組[130,135],如圖是按上述分組得到的頻率分布直方圖的一部分,已知前三組的人數(shù)成等差數(shù)列,第六組的人數(shù)為4人,第一組的人數(shù)是第七組、第八組人數(shù)之和.
(1)在圖上補全頻率分布直方圖,并估計該校1000名學(xué)生中成績在120分以上(含120分)的人數(shù);
(2)若從成績屬于第六組,第八組的所有學(xué)生中隨機抽取兩名學(xué)生,記他們的成績分別為x,y,事件G=||x﹣y|≤5|,求P(G).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1、F2分別是雙曲線 的左右焦點,A為雙曲線的右頂點,線段AF2的垂直平分線交雙曲線與P,且|PF1|=3|PF2|,則該雙曲線的離心率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】富華中學(xué)的一個文學(xué)興趣小組中,三位同學(xué)張博源、高家銘和劉雨恒分別從莎士比亞、雨果和曹雪芹三位名家中選擇了一位進行性格研究,并且他們選擇的名家各不相同.三位同學(xué)一起來找圖書管理員劉老師,讓劉老師猜猜他們?nèi)烁髯缘难芯繉ο螅畡⒗蠋煵铝巳湓挘骸阿購埐┰囱芯康氖巧勘葋;②劉雨恒研究的肯定不是曹雪芹;③高家銘自然不會研究莎士比亞.”很可惜,劉老師的這種猜法,只猜對了一句.據(jù)此可以推知張博源、高家銘和劉雨恒分別研究的是__________.(A莎士比亞、B雨果、C曹雪芹,按順序填寫字母即可.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)是二次函數(shù),如圖是f′(x)的大致圖象,若f(x)的極大值與極小值的和等于 ,則f(0)的值為( )
A.0
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4月23日是世界讀書日,為提高學(xué)生對讀書的重視,讓更多的人暢游于書海中,從而收獲更多的知識,某高中的校學(xué)生會開展了主題為“讓閱讀成為習(xí)慣,讓思考伴隨人生”的實踐活動,校學(xué)生會實踐部的同學(xué)隨即抽查了學(xué)校的40名高一學(xué)生,通過調(diào)查它們是喜愛讀紙質(zhì)書還是喜愛讀電子書,來了解在校高一學(xué)生的讀書習(xí)慣,得到如表列聯(lián)表:
喜歡讀紙質(zhì)書 | 不喜歡讀紙質(zhì)書 | 合計 | |
男 | 16 | 4 | 20 |
女 | 8 | 12 | 20 |
合計 | 24 | 16 | 40 |
(Ⅰ)根據(jù)如表,能否有99%的把握認為是否喜歡讀紙質(zhì)書籍與性別有關(guān)系?
(Ⅱ)從被抽查的16名不喜歡讀紙質(zhì)書籍的學(xué)生中隨機抽取2名學(xué)生,求抽到男生人數(shù)ξ的分布列及其數(shù)學(xué)期望E(ξ).
參考公式:K2=,其中n=a+b+c+d.
下列的臨界值表供參考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】實驗杯足球賽采用七人制淘汰賽規(guī)則,某場比賽中一班與二班在常規(guī)時間內(nèi)戰(zhàn)平,直接進入點球決勝環(huán)節(jié),在點球決勝環(huán)節(jié)中,雙方首先輪流罰點球三輪,罰中更多點球的球隊獲勝;若雙方在三輪罰球中未分勝負,則需要進行一對一的點球決勝,即雙方各派處一名隊員罰點球,直至分出勝負;在前三輪罰球中,若某一時刻勝負已分,尚未出場的隊員無需出場罰球(例如一班在先罰球的情況下,一班前兩輪均命中,二班前兩輪未能命中,則一班、二班的第三位同學(xué)無需出場).由于一班同學(xué)平時踢球熱情較高,每位隊員罰點球的命中率都能達到0.8,而二班隊員的點球命中串只有0.5,比賽時通過抽簽決定一班在每一輪都先罰球.
(1)定義事件為“一班第三位同學(xué)沒能出場罰球”,求事件發(fā)生的概率;
(2)若兩隊在前三輪點球結(jié)束后打平,則進入一對一點球決勝,一對一球決勝由沒有在之前點球大戰(zhàn)中出場過的隊員主罰點球,若在一對一點球決勝的某一輪中,某對隊員射入點球且另一隊員未能射入,則比賽結(jié)束;若兩名隊員均射入或者均射失點球,則進行下一輪比賽. 若直至雙方場上每名隊員都已經(jīng)出場罰球,則比賽亦結(jié)束,雙方通過抽簽決定勝負,本場比賽中若已知雙方在點球大戰(zhàn),以隨機變量記錄雙方進行一對一點球決勝的輪數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com