解析:當(dāng)時(shí),,即,
所以.
而是正整數(shù),所以取,下面用數(shù)學(xué)歸納法證明:.
(1)當(dāng)時(shí),已證;
(2)假設(shè)當(dāng)時(shí),不等式成立,即.
則當(dāng)時(shí),
有
.
因?yàn)?IMG src='http://thumb.1010pic.com/pic1/img/20091103/20091103173001014.gif' width=237 height=40>,
所以,
所以.
所以當(dāng)時(shí)不等式也成立.
由(1)(2)知,對(duì)一切正整數(shù),都有,
所以的最大值等于25.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013屆廣東省高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
已知數(shù)列中,,, 為該數(shù)列的前項(xiàng)和,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)若不等式對(duì)一切正整數(shù)都成立,求正整數(shù)的最大值,并證明結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年河北省高二第二學(xué)期期末數(shù)學(xué)(理)試題 題型:解答題
(本小題滿分12分)
若不等式對(duì)一切正整數(shù)n都成立,求正整數(shù)a的最大值,并用數(shù)學(xué)歸納法證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com