分析 先畫出約束條件的可行域,根據(jù)已知條件中,表示的平面區(qū)域的面積等于4,構(gòu)造關(guān)于a的方程,解方程即可得到答案.
解答 解:不等式組$\left\{\begin{array}{l}{x+y-1≥0}\\{x-2≤0}\\{ax-y+1≥0}\end{array}\right.$(a>0)所圍成的區(qū)域如圖所示.
∵其面積為4,
∴|AC|=4,
∴C的坐標(biāo)為(2,3),代入ax-y+1=0,解得a=1.
故答案為:1.
點(diǎn)評 平面區(qū)域的面積問題是線性規(guī)劃問題中一類重要題型,在解題時(shí),關(guān)鍵是正確地畫出平面區(qū)域,然后結(jié)合有關(guān)面積公式求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{8}{3}$,$\frac{8}{3}$) | B. | [-$\frac{8}{3}$,$\frac{8}{3}$] | C. | (-∞,-$\frac{8}{3}$)∪($\frac{8}{3}$,+∞) | D. | [-∞,$\frac{8}{3}$]∪[$\frac{8}{3}$,+∞] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5份 | B. | 10份 | C. | 15份 | D. | 20份 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,3)∪(2,+∞) | B. | (-6,1) | C. | (-∞,-6)∪(1,+∞) | D. | (-3,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x1x2>1 | B. | x1x2<1 | C. | x1x2=1 | D. | 無法判斷 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com