18.計算行列式$|\begin{array}{l}{0}&{1}&{0}&{…}&{0}\\{0}&{0}&{2}&{…}&{0}\\{?}&{?}&{?}&{\;}&{?}\\{0}&{0}&{0}&{…}&{n-1}\\{n}&{0}&{0}&{…}&{0}\end{array}|$的值.

分析 直接利用行列式的定義,求解即可.

解答 解:$|\begin{array}{l}{0}&{1}&{0}&{…}&{0}\\{0}&{0}&{2}&{…}&{0}\\{?}&{?}&{?}&{\;}&{?}\\{0}&{0}&{0}&{…}&{n-1}\\{n}&{0}&{0}&{…}&{0}\end{array}|$=1•2•3•4…(n-1)•n=n!.

點評 本題考查行列式的定義,基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖所示,在正方體ABCD-A1B1C1D1中,E為DD1上一點,且DE=$\frac{1}{3}$DD1,F(xiàn)是側(cè)面CDD1C1上的動點,且B1F∥平面A1BE,則B1F與平面CDD1C1所成角的正切值構(gòu)成的集合是( 。
A.{$\frac{3}{2}$}B.{$\frac{2}{5}\sqrt{13}$}C.{m|$\frac{3}{2}$≤m≤$\frac{3}{2}$$\sqrt{2}$}D.{m|$\frac{2}{5}$$\sqrt{13}$≤m≤$\frac{3}{2}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖所示的是y=f′(x) 的圖象,則下列判斷正確的是( 。
①f(x)在(-∞,1)上是增函數(shù);
②x=-1是f(x)的極小值點;
③f(x)在(2,4)上是減函數(shù),在(-1,2)上是增函數(shù);
④x=2是f(x)的極小值點.
A.①②B.①④C.③④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.證明:f(x)=x3-ax-1圖象不可能總在直線y=a的上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}為等比數(shù)列,bn=log${\;}_{\frac{1}{2}}$an,b2+b4=12,b3+b5=16.
(1)求{bn}的通項公式;
(2)求{bn}的前100項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)等差數(shù)列{an}的前n項和為Sn,已知a3=12,S12>0,S13<0.求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知c>a>b>0,求證:$\frac{a}{c-a}$>$\frac{c-b}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.比較下列各組數(shù)的大;
(1)logab,logba(b>a>1);
(2)log2$\frac{1}{2}$.log2(a2+a+1)(a∈R);
(3)log0.53,log0.23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前n項和為Sn,若n,an,Sn構(gòu)成等差數(shù)列.
(1)求證:數(shù)列{an+1}是等比數(shù)列;
(2)求{an}的通項公式,并求使Sn>2015成立的最小n;
(3)求證:$\frac{n}{2}$-$\frac{1}{3}$<$\sum_{k=1}^{n}$$\frac{{a}_{k}}{{a}_{k+1}}$<$\frac{n}{2}$.

查看答案和解析>>

同步練習(xí)冊答案