分析 先求出函數(shù)的定義域,然后利用復合函數(shù)的單調(diào)性確定函數(shù)f(x)的單調(diào)遞減區(qū)間.
解答 解:要使函數(shù)有意義,則-x2+6x-5>0,解得x∈(1,5),
設(shè)t=-x2+6x-5,則函數(shù)在(1,3]上單調(diào)遞增,在[3,5)上單調(diào)遞減.
因為函數(shù)log${\;}_{\frac{1}{2}}$t在定義域上為減函數(shù),
所以由復合函數(shù)的單調(diào)性性質(zhì)可知,則此函數(shù)的單調(diào)遞減區(qū)間是(1,3].
故答案為:(1,3].
點評 本題主要考查了復合函數(shù)的單調(diào)性以及單調(diào)區(qū)間的求法.對應復合函數(shù)的單調(diào)性,一要注意先確定函數(shù)的定義域,二要利用復合函數(shù)與內(nèi)層函數(shù)和外層函數(shù)單調(diào)性之間的關(guān)系進行判斷,判斷的依據(jù)是“同增異減”.
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=x2+1 | B. | y=-x2+1 | C. | $y=-{x^2}+1,x∈[{-\sqrt{2},\sqrt{2}}]$ | D. | y=x2+1,x∈[-$\sqrt{2}$,$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
未發(fā)病 | 發(fā)病 | 合計 | |
未注射疫苗 | 20 | x | A |
注射疫苗 | 30 | y | B |
合計 | 50 | 50 | 100 |
P( K2≤K0) | 0.05 | 0.01 | 0.005 | 0.001 |
K0 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\sqrt{2}$,$\frac{π}{4}$) | B. | ($\sqrt{2}$,$\frac{7π}{4}$) | C. | (2,$\frac{π}{4}$) | D. | (2,$\frac{3π}{4}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 20$\sqrt{91}$ m | B. | 20$\sqrt{31}$ m | C. | 500 m | D. | 60$\sqrt{66}$ m |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com