18.已知函數(shù)f(x)=ax3+bx(a≠0)在x=1處取得極大值2,g(x)=$\frac{f(x)}{x}$+3lnx.
(I)函數(shù)f(x)在點(1,2)處的切線方程;
(Ⅱ)若函數(shù)g(x)的圖象恒在直線y=x+m的下方,求m的取值范圍.

分析 (Ⅰ)求出函數(shù)的導數(shù),得到關于a,b的方程組,解出即可;
(Ⅱ)令h(x)=g(x)-(x+m)=-x2-x+3lnx+3-m,求出函數(shù)的導數(shù)即可.

解答 解:(Ⅰ)f′(x)=3ax2+b,
∵函數(shù)f(x)在x=1處取得極大值2,
∴$\left\{\begin{array}{l}{f′(1)=3a+b=0}\\{f(1)=a+b=2}\end{array}\right.$,
解得:a=-1,b=3,
故f(x)=-x3+3x,f′(1)=0,
故f(x)在(1,2)的切線方程是:y=2;
(Ⅱ)由(Ⅰ)得:g(x)=-x2+3+3lnx,
令h(x)=g(x)-(x+m)=-x2-x+3lnx+3-m,
h′(x)=-2x-1+$\frac{3}{x}$=$\frac{-{2x}^{2}-x+3}{x}$,
令h′(x)=0,得x=1,x=-$\frac{3}{2}$(舍去).
由函數(shù)y=h(x)定義域為(0,+∞),
則當0<x<1時,h'(x)>0,
當x>1時h'(x)<0,
∴當x=1時,函數(shù)h(x)取得最大值1-m.
由1-m<0得m>1
故m的取值范圍是(1,+∞).

點評 本題主要考查了函數(shù)解析式的求解,以及利用導數(shù)研究函數(shù)的單調(diào)性,是高考中常考的題型,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.設全集U=R,集合A={x||x-1|≤2},B={x|x<1},則集合∁U(A∩B)=( 。
A.{x|-1<x≤3}B.{x|x≥1或x<-1}C.{x|x>3}D.{x|-1≤x<1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知△ABC的三頂點分別是A(-2,2),B(1,4),C(5,-2),求它的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.直線2x+2y+1=0,x+y+2=0之間的距離是( 。
A.$\frac{{3\sqrt{2}}}{4}$B.$\frac{3}{4}$C.$\sqrt{5}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若數(shù)列{an}的前n項和為${S_n}=\frac{2}{3}{a_n}+1$,則{an}的通項公式是an=3•(-2)n-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設f(x)=sinxcosx-cos2(x+$\frac{π}{4}$).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在銳角△ABC中,角A,B,C的對邊分別為a,b,c.若f($\frac{A}{2}$)=$\frac{\sqrt{3}-1}{2}$,a=1,b+c=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.函數(shù)y=log${\;}_{\frac{1}{2}}$(-x2+6x-5)的單調(diào)遞減區(qū)間為(1,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知向量$\overrightarrow a$=(2sinx,cosx),$\overrightarrow b$=($\sqrt{3}$cosx,2cosx),函數(shù)f(x)=$\overrightarrow a•\overrightarrow b+m$(x∈R),其中m為常數(shù).
(1)求函數(shù)y=f(x)的周期;
(2)如果y=f(x)的最小值為0,求m的值,并求此時f(x)的最大值及取得最大值時自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,$\overrightarrow{a}$與$\overrightarrow$的夾角為120°.
(1)求|$\overrightarrow{a}$+2$\overrightarrow$|的值;
(2)求$\overrightarrow{a}$+2$\overrightarrow$在$\overrightarrow$方向上的投影.

查看答案和解析>>

同步練習冊答案