分析 由已知可得sinα>0,cosα<0,將$cosα+sinα=-\frac{1}{5}$,兩邊平方可得2sinαcosα,進(jìn)而可求cosα-sinα的值,聯(lián)立可求sinα,cosα,進(jìn)而解得tanα,利用二倍角的正切函數(shù)公式即可計(jì)算求值得解.
解答 解:∵α∈(0,π),可得:sinα>0,
∵$cosα+sinα=-\frac{1}{5}$,①
∴可得:cosα=-$\frac{1}{5}$-sinα<0,可得:tanα=$\frac{sinα}{cosα}$<0,
∵將$cosα+sinα=-\frac{1}{5}$,兩邊平方可得:1+2sinαcosα=$\frac{1}{25}$,可得:2sinαcosα=-$\frac{24}{25}$,
∴cosα-sinα=-$\sqrt{(cosα-sinα)^{2}}$=-$\sqrt{1-(-\frac{24}{25})}$=-$\frac{7}{5}$.②
∴由①②可得:sinα=$\frac{3}{5}$,cosα=-$\frac{4}{5}$,tanα=-$\frac{3}{4}$.
∴tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=-$\frac{24}{7}$.
故答案為:-$\frac{24}{7}$.
點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,二倍角的正切函數(shù)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∅ | B. | {-1,0,1} | C. | {0,1,2} | D. | {-1,0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|-1<x≤3} | B. | {x|x≥1或x<-1} | C. | {x|x>3} | D. | {x|-1≤x<1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
$\overrightarrow{x}$ | $\overrightarrow{y}$ | $\overrightarrow{w}$ | $\sum_{i=1}^{8}$(xi-$\overline{x}$)2 | $\sum_{i=1}^{8}$(wi-$\overline{w}$)2 | $\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$) | $\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$) |
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6,6 | B. | 5,6 | C. | 5,5 | D. | 6,5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com