11.設(shè)集合M={大于0小于1的有理數(shù)},
N={小于1050的正整數(shù)},
P={定圓C的內(nèi)接三角形},
Q={所有能被7整除的數(shù)},
其中無(wú)限集是( 。
A.M、N、PB.M、P、QC.N、P、QD.M、N、Q

分析 利用集合中元素的個(gè)數(shù)有限與無(wú)限進(jìn)行判斷,即可得出結(jié)論.

解答 解:集合M={大于0小于1的有理數(shù)},是無(wú)限集,
N={小于1050的正整數(shù)},是有限集,
P={定圓C的內(nèi)接三角形},是無(wú)限集,
Q={所有能被7整除的數(shù)},是無(wú)限集,
故選B.

點(diǎn)評(píng) 本題考查集合的分類,考查學(xué)生對(duì)概念的理解,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
(I)當(dāng)a=0時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
( II)討論函數(shù)f(x)的單調(diào)性;
(III)當(dāng)a=l時(shí),對(duì)?m,n∈[-3,0],|f(m)-f(n)|≤M恒成立,求M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=a-$\frac{x}$-lnx(a,b∈R).
(Ⅰ)若函數(shù)f(x)在[1,e]上單調(diào)遞增(e為自然對(duì)數(shù)的底數(shù)),求b的取值范圍;
(Ⅱ)若b=1,是否存在實(shí)數(shù)a使得f(x)恰有兩個(gè)不同零點(diǎn),若存在,求出a的取值集合;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(1)已知sin(θ+$\frac{π}{4}$)=$\frac{1}{3}$,θ∈($\frac{π}{2}$,π),求sinθ;
(2)已知cos(α+β)=$\frac{1}{3}$,tanα•tanβ=$\frac{1}{3}$,求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.y=$\sqrt{\frac{x-1}{2x}}$-log2(4-x2)的定義域是(-2,0)∪[1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,如果輸入的P=2,Q=1,則輸出的M等于( 。
A.37B.30C.24D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.復(fù)數(shù)z=$\frac{1}{2}$+$\frac{1}{2}$i(其中i為虛數(shù)單位)的虛部是( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$iC.$\frac{1}{2}$D.-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知定義在R上的偶函數(shù)f(x)在[0,+∞)上單調(diào)遞增,且f(1)=0,則不等式f(x-2)≤0的解集是{x|x≥3或x≤1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.拋物線y2=2x的焦點(diǎn)到直線x-$\sqrt{3}$y=0的距離是( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{4}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案