【題目】在直角坐標(biāo)系中,曲線:(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線:.
(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若曲線上有一動(dòng)點(diǎn),曲線上有一動(dòng)點(diǎn),求的最小值.
【答案】(1);(2)見解析.
【解析】
(1)利用將曲線的參數(shù)方程轉(zhuǎn)化為普通方程.利用極坐標(biāo)和直角坐標(biāo)相互轉(zhuǎn)化公式,求得曲線的直角坐標(biāo)方程.
(2)設(shè)出點(diǎn)的坐標(biāo),利用點(diǎn)到直線的距離公式,結(jié)合三角函數(shù)的最值的求法,以及對(duì)進(jìn)行分類討論,求得的最小值.
(1)曲線:(為參數(shù)為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為:.
線曲線:.整理得,轉(zhuǎn)換為直角坐標(biāo)方程為.
(2)設(shè)點(diǎn),根據(jù)題意的最小值即為點(diǎn)到直線的距離的最小值.
故:,
當(dāng)時(shí),曲線和曲線相交或相切,此時(shí),
當(dāng)時(shí),曲線和曲線相離,當(dāng)時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|2x+2|,g(x)=|x+2|﹣|x﹣2a|+a.
(1)求不等式f(x)>4的解集;
(2)對(duì)x1∈R,x2∈R,使得f(x1)≥g(x2)成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行元旦促銷回饋活動(dòng),凡購(gòu)物滿1000元,即可參與抽獎(jiǎng)活動(dòng),抽獎(jiǎng)規(guī)則如下:在一個(gè)不透明的口袋中裝有編號(hào)為1、2、3、4、5的5個(gè)完全相同的小球,顧客每次從口袋中摸出一個(gè)小球,共摸三次(每次摸出的小球均不放回口袋),編號(hào)依次作為一個(gè)三位數(shù)的個(gè)位、十位、百位,若三位數(shù)是奇數(shù),則獎(jiǎng)勵(lì)50元,若三位數(shù)是偶數(shù),則獎(jiǎng)勵(lì)元(為三位數(shù)的百位上的數(shù)字,如三位數(shù)為234,則獎(jiǎng)勵(lì)元).
(1)求抽獎(jiǎng)?wù)咴谝淮纬楠?jiǎng)中所得三位數(shù)是奇數(shù)的概率;
(2)求抽獎(jiǎng)?wù)咴谝淮纬楠?jiǎng)中獲獎(jiǎng)金額的概率分布與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).(是自然對(duì)數(shù)的底數(shù))
(1)求的單調(diào)遞減區(qū)間;
(2)記,若,試討論在上的零點(diǎn)個(gè)數(shù).(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為支援武漢抗擊新冠肺炎疫情,軍隊(duì)抽組1400名醫(yī)護(hù)人員于2月3日起承擔(dān)武漢火神山?漆t(yī)院醫(yī)療救治任務(wù).此外,從解放軍疾病預(yù)防控制中心、軍事科學(xué)院軍事醫(yī)學(xué)研究院抽取15名專家組成聯(lián)合專家組,指導(dǎo)醫(yī)院疫情防控工作.該醫(yī)院開設(shè)了重癥監(jiān)護(hù)病區(qū)(),重癥病區(qū)(),普通病區(qū)()三個(gè)病區(qū).現(xiàn)在將甲乙丙丁4名專家分配到這三個(gè)病區(qū)了解情況,要求每個(gè)專家去一個(gè)病區(qū),每個(gè)病區(qū)都有專家,一個(gè)病區(qū)可以有多個(gè)專家.已知甲不能去重癥監(jiān)護(hù)病區(qū)(),乙不能去重癥病區(qū)(),則一共有__________種分配方式
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)有極值,且導(dǎo)函數(shù)的極值點(diǎn)是的零點(diǎn).
(1)求關(guān)于的函數(shù)關(guān)系式,并寫出定義域;
(2)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的普通方程為:,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,正方形的頂點(diǎn)都在上,且逆時(shí)針依次排列,點(diǎn)的極坐標(biāo)為
(1)寫出曲線的參數(shù)方程,及點(diǎn)的直角坐標(biāo);
(2)設(shè)為橢圓上的任意一點(diǎn),求:的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某購(gòu)物網(wǎng)站開展一種商品的預(yù)約購(gòu)買,規(guī)定每個(gè)手機(jī)號(hào)只能預(yù)約一次,預(yù)約后通過(guò)搖號(hào)的方式?jīng)Q定能否成功購(gòu)買到該商品.規(guī)則如下:(。⿹u號(hào)的初始中簽率為;(ⅱ)當(dāng)中簽率不超過(guò)時(shí),可借助“好友助力”活動(dòng)增加中簽率,每邀請(qǐng)到一位好友參與“好友助力”活動(dòng)可使中簽率增加.為了使中簽率超過(guò),則至少需要邀請(qǐng)________位好友參與到“好友助力”活動(dòng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,是的導(dǎo)函數(shù).
(1)若,求在處的切線方程;
(2)若在可上單調(diào)遞增,求的取值范圍;
(3)求證:當(dāng)時(shí)在區(qū)間內(nèi)存在唯一極大值點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com