分析 設等比數(shù)列{an}的公比為q,由a1=1,$\frac{{a}_{n+1}+{a}_{n+2}}{{a}_{n}+{a}_{n+1}}$=2,可得q=2.可得an,b1=1,bn+1-bn=$\frac{1}{{a}_{n+1}}$=$(\frac{1}{2})^{n}$,利用“累加求和”方法與等比數(shù)列的求和公式即可得出.
解答 解:設等比數(shù)列{an}的公比為q,∵a1=1,$\frac{{a}_{n+1}+{a}_{n+2}}{{a}_{n}+{a}_{n+1}}$=2,
∴q=2.
∴an=2n-1.
b1=1,bn+1-bn=$\frac{1}{{a}_{n+1}}$=$(\frac{1}{2})^{n}$,
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=$(\frac{1}{2})^{n-1}$+$(\frac{1}{2})^{n-2}$+…+$\frac{1}{2}$+1
=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$=2-$\frac{1}{{2}^{n-1}}$.
則{bn}的通項公式是bn=2-$\frac{1}{{2}^{n-1}}$.
故答案為:bn=2-$\frac{1}{{2}^{n-1}}$.
點評 本題考查了遞推公式、等比數(shù)列的通項公式與求和公式、“累加求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,1] | B. | [0,1) | C. | [0,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{n(2n-1)}{2}$ | B. | 2(2n2-n) | C. | $\frac{n^2}{2}$ | D. | 2n2-n |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | sinα | B. | -cosα | C. | cosα | D. | -sinα |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow{OM}=\frac{1}{4}\overrightarrow a+\frac{2}{3}\overrightarrow b$ | B. | $\overrightarrow{OM}=\frac{1}{7}\overrightarrow a+\frac{3}{7}\overrightarrow b$ | C. | $\overrightarrow{OM}=\frac{2}{5}\overrightarrow a+\frac{3}{4}\overrightarrow b$ | D. | $\overrightarrow{OM}=\frac{1}{7}\overrightarrow a+\frac{3}{7}\overrightarrow b$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com