14.設(shè)全集U=R,集合A={y|-1<y<4},B={y|0<y<5},試求∁UB,A∪B,A∩B,A∩(∁UB),(∁U A)∩(∁UB).

分析 利用集合的交集、并集、補(bǔ)集的定義求出各個(gè)集合.

解答 解:由條件得B={y|0<y<5},從而CUB={y|y≤0或y≥5},
A∪B={y|-1<y<5},
A∩B={y|0<y<4},
A∩(CUB)={y|-1<y≤0},
(CU A)∩(CUB)={y|y≤-1或y≥5}

點(diǎn)評(píng) 此題考查了交、并、補(bǔ)集的混合運(yùn)算,熟練掌握各自的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直線l過點(diǎn)P(1,2),斜率k=2
(1)寫出直線l的方程;   
(2)判斷點(diǎn)A(1,-2)是否在直線l上?
(3)直線n過點(diǎn)B(2,9)且平行于直線l,求直線n的方程;
(4)求直線l與直線n的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知復(fù)數(shù)z滿足(2+i)z=3+4i,則z=(  )
A.2+iB.-2-iC.2-iD.-2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.圓C:(x-2)2+(y+1)2=3的圓心坐標(biāo)是( 。
A.(2,1)B.(2,-1)C.(-2,1)D.(-2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列對(duì)象能確定一個(gè)集合的是( 。
A.第一象限內(nèi)的所有點(diǎn)B.某班所有成績(jī)較好的學(xué)生
C.高一數(shù)學(xué)課本中的所有難題D.所有接近1的數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖,在正方形ABCD中,點(diǎn)E是DC的中點(diǎn),點(diǎn)F是BC的一個(gè)三等分點(diǎn),那么$\overrightarrow{EF}$=$\frac{1}{2}\overrightarrow{AB}$$-\frac{2}{3}\overrightarrow{AD}$(用$\overrightarrow{AB}$和$\overrightarrow{AD}$表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=2sin(ωx+φ)-1(ω>0,|φ|<π)對(duì)于任意x∈R滿足f(x)=f(-x)和f(x)=f(2-x),在區(qū)間[0,1]上,函數(shù)f(x)單調(diào)遞增,則有ω=π,φ=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)為奇函數(shù),當(dāng)x≥0時(shí),f(x)=$\sqrt{x}$.g(x)=$\left\{\begin{array}{l}{f(x),x≥0}\\{f(-x),x<0}\end{array}\right.$,
(1)求當(dāng)x<0時(shí),函數(shù)f(x)的解析式;
(2)求g(x)的解析式,并證明g(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知向量$\overrightarrow{a}$=(cosx,-$\frac{1}{2}$),$\overrightarrow$=($\sqrt{3}$sinx,cos2x),x∈R,設(shè)函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$.
(Ⅰ) 求f (x)的最小正周期.
(Ⅱ) 求f (x) 在[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案