已知函數(shù)存在兩個(gè)極值點(diǎn)x1,x2,且x1<x2
(1)求證:函數(shù)f(x)的導(dǎo)函數(shù)f′(x)在(-2,0)上是單調(diào)函數(shù);
(2)設(shè)A(x1,f(x1)),B(x2,f(x2)),若直線AB的斜率不小于-2,求實(shí)數(shù)a的取值范圍.
【答案】分析:(1)先對(duì)函數(shù)f(x)進(jìn)行求導(dǎo),根據(jù)原函數(shù)有兩個(gè)極值點(diǎn)可求出a的范圍,再對(duì)函數(shù)f'(x)求導(dǎo)得到f''(x)后判斷其符號(hào)可得到導(dǎo)函數(shù)f′(x)在(-2,0)上的單調(diào)性.
(2)表示出直線AB的斜率,將(1)中結(jié)果代入可解出a的范圍.
解答:(1)∵函數(shù)存在兩個(gè)極值點(diǎn)x1,x2,且x1<x2
∴f'(x)=x2+ax+a,△=a2-4a>0,∴a>4或a<0,且x1+x2=-a,x1x2=a
∴f''(x)=2x+a∴x∈(-2,0)時(shí),f''(x)=2x+a∈(-4+a,a)
若a>4時(shí),f''(x)>0,f′(x)在(-2,0)上是單調(diào)增函數(shù)
若a<0時(shí),f''(x)<0,f′(x)在(-2,0)上是單調(diào)減函數(shù)
得證.
(2)直線AB的斜率==
=(x22+x12+x1x2)+=+≥-2
∵x1+x2=-a,x1x2=a
≥-2∴-2≤a≤6
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的正負(fù)的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南省三校高三上學(xué)期聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知函數(shù)的兩個(gè)極值點(diǎn)分別為,且,,點(diǎn)表示的平面區(qū)域?yàn)?img src="http://thumb2018.1010pic.com//pic6/res/gzsx/web/STSource/2014040604174483314065/SYS201404060418449424823468_ST.files/image006.png">,若函數(shù)的圖象上存在區(qū)域內(nèi)的點(diǎn),則實(shí)數(shù)的取值范圍為               .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北衡水中學(xué)高三上學(xué)期第五次調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知函數(shù)的兩個(gè)極值點(diǎn)分別為,且,,點(diǎn)表示的平面區(qū)域?yàn)?img src="http://thumb2018.1010pic.com//pic6/res/gzsx/web/STSource/2014032911373332631536/SYS201403291138217013445789_ST.files/image006.png">,若函數(shù)的圖像上存在區(qū)域內(nèi)的點(diǎn),則實(shí)數(shù)的取值范圍是( 。

A.           B.       C.     D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆云南師大附中高考適應(yīng)性月考理科數(shù)學(xué)試卷(一)(解析版) 題型:選擇題

已知函數(shù)的兩個(gè)極值點(diǎn)分別為,且,點(diǎn)表示的平面區(qū)域?yàn)?img src="http://thumb2018.1010pic.com//pic6/res/gzsx/web/STSource/2013121123574294894306/SYS201312112358436706449541_ST.files/image006.png">,若函數(shù)的圖像上存在區(qū)域內(nèi)的點(diǎn),則實(shí)數(shù)的取值范圍是(  )

A.     B.     C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年高三(上)數(shù)學(xué)寒假作業(yè)(文科)(解析版) 題型:解答題

已知函數(shù)存在兩個(gè)極值點(diǎn)x1,x2,且x1<x2
(1)求證:函數(shù)f(x)的導(dǎo)函數(shù)f′(x)在(-2,0)上是單調(diào)函數(shù);
(2)設(shè)A(x1,f(x1)),B(x2,f(x2)),若直線AB的斜率不小于-2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案