分析 由s$in2α=\frac{24}{25}$,利用同角二角函數(shù)關(guān)系式能求出(cosα-sinα)2=$\frac{1}{25}$,再由$π<α<\frac{5π}{4}$,得到sinα>cosα,由此能求出cosα-sinα.
解答 解:∵s$in2α=\frac{24}{25}$,
∴(cosα-sinα)2=cos2α+sin2α-2cosαsinα=1-sin2α=1-$\frac{24}{25}$=$\frac{1}{25}$,
∵$π<α<\frac{5π}{4}$,∴sinα>cosα,
∴cosα-sinα=-$\frac{1}{5}$.
故答案為:-$\frac{1}{5}$.
點評 本題考查三角函數(shù)化簡求值,考查同角三角函數(shù)關(guān)系式,考查推理論證能力、運算求解能力、創(chuàng)新應(yīng)用能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{12}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4+2($\sqrt{2}$+$\sqrt{3}$) | B. | 6+2($\sqrt{2}$+$\sqrt{5}$) | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y2=8$\sqrt{5}$x | B. | y2=4$\sqrt{5}$x | C. | y2=2$\sqrt{5}$x | D. | y2=$\sqrt{5}$x |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com