4.一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.4B.$\frac{4}{3}$C.2D.$\frac{8}{3}$

分析 由已知中的三視圖可得:該幾何體是同底的兩個四棱錐,AQDP是邊長為2的正方形,ABCD是矩形,且與底面垂直,如圖所示.

解答 解:由已知中的三視圖可得:該幾何體是同底的兩個四棱錐,AQDP是邊長為2的正方形,ABCD是矩形,且與底面垂直,如圖所示:
該幾何體的體積V=$\frac{1}{3}×2\sqrt{2}×1×\sqrt{2}×2$
=$\frac{8}{3}$.
故選:D.

點評 本題考查了四棱錐的三視圖、體積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=e${\;}^{\frac{x}{a}}$(x2-3ax+a2))(a>0)
(1)求函數(shù)f(x)單調區(qū)間;
(2)函數(shù)f(x)在(-∞,+∞)上是否存在最小值,若存在,求出該最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.(1)已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式.
(2)定義在(-1,1)內(nèi)的函數(shù)f(x)滿足2f(x)-f(-x)=lg(x+1),求函數(shù)f(x)的解析式.
(3)已知f(2x+1)=4x2+8x+3,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)y=(x+1)2的零點是( 。
A.0B.-1C.(0,0)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.斜率為-3,在x軸上截距為2的直線的一般式方程是3x+y-6=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)$f(x)=\frac{1}{x}+alnx$,g(x)=f(x)+ax-lnx.
(Ⅰ)討論f(x)的單調性;
(Ⅱ)是否存在常數(shù)t,使g(x)≥t對任意的a∈[1,e]和任意的x∈(0,+∞)都成立,若存在,求出t的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設函數(shù)f(x)=ex-a(x+1)(e是自然對數(shù)的底數(shù),e=2.71828…).
(1)若f'(0)=0,求實數(shù)a的值,并求函數(shù)f(x)的單調區(qū)間;
(2)設g(x)=f(x)+$\frac{a}{e^x}$,且A(x1,g(x1)),B(x2,g(x2))(x1<x2)是曲線y=g(x)上任意兩點,若對任意的a≤-1,恒有g(x2)-g(x1)>m(x2-x1)成立,求實數(shù)m的取值范圍;
(3)求證:1n+3n+…+(2n-1)n<$\frac{{\sqrt{e}}}{e-1}{(2n)^n}(n∈{N^*})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設函數(shù)f(x)=$\frac{{a}^{2x}-(t-1)}{{a}^{x}}$ (a>0且a≠1)是定義域為R的奇函數(shù).
(Ⅰ)求t的值;
(Ⅱ)若函數(shù)f(x)的圖象過點(1,$\frac{3}{2}$),是否存在正數(shù)m(m≠1),使函數(shù)g(x)=logm[a2x+a-2x-mf(x)]在[1,log23]上的最大值為0,若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知{an}為等差數(shù)列,若a1+a5+a9=5π,則cos(a2+a8)為-$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案