分析 (1)設(shè)拋物線的方程為x2=2py,由題意可得p=2,進(jìn)而得到拋物線的方程;
(2)設(shè)A(x1,y1),B(x2,y2),直線AB的方程為y=kx+1,代入拋物線方程,運(yùn)用韋達(dá)定理,求得M,N的橫坐標(biāo),運(yùn)用弦長公式,化簡整理,即可得到所求范圍.
解答 解:(1)由題意可設(shè)拋物線的方程為x2=2py,
由焦點(diǎn)為F(0,1),可得$\frac{p}{2}$=1,即p=2,
則拋物線的方程為x2=4y;
(2)設(shè)A(x1,y1),B(x2,y2),
直線AB的方程為y=kx+1,代入x2=4y,得
x2-4kx-4=0,x1+x2=4k,x1x2=-4,
$|{x_1}-{x_2}|=4\sqrt{{k^2}+1}$,
由y=x-2和y=$\frac{{y}_{1}}{{x}_{1}}$x聯(lián)立,得${x_M}=\frac{8}{{4-{x_1}}}$,同理${x_N}=\frac{8}{{4-{x_2}}}$,
所以$|MN|=\sqrt{2}|{x_M}-{x_N}|$=$\frac{{8\sqrt{2}\sqrt{{k^2}+1}}}{|4k-3|}$,
令4k-3=t,t≠0,則$k=\frac{t+3}{4}$,
則$|MN|=2\sqrt{2}\sqrt{\frac{25}{t^2}+\frac{6}{t}+1}=2\sqrt{2}\sqrt{{{(\frac{5}{t}+\frac{3}{5})}^2}+\frac{16}{25}}≥\frac{8}{5}\sqrt{2}$,
則所求范圍為$[{\frac{8}{5}\sqrt{2},+∞})$.
點(diǎn)評(píng) 本題考查拋物線的方程的求法,注意運(yùn)用待定系數(shù)法,考查直線方程和拋物線的方程聯(lián)立,運(yùn)用韋達(dá)定理和弦長公式,考查化簡整理的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5π | B. | 9π | C. | 16π | D. | 25π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 正三角形 | B. | 等腰三角形 | C. | 不等邊三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com