5.已知遞增等差數(shù)列{an}滿足a1•a4=7,a2+a3=8.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,數(shù)列{bn}的前n項和為Sn,求證:Sn$<\frac{1}{2}$.

分析 (1)由題意可得公差d>0,由等差數(shù)列的性質(zhì)解得a1=1,a4=7,可得公差d=2,進而得到所求通項公式;
(2)求出bn=$\frac{1}{{a}_{n}{•a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),運用數(shù)列的求和方法:裂項相消求和,化簡整理,結(jié)合不等式的性質(zhì)即可得證.

解答 解:(1)遞增等差數(shù)列{an},可得公差d>0,
滿足a1•a4=7,a2+a3=8,
即有a1+a4=8,
解得a1=1,a4=7,(a1=7,a4=1舍去),
可得公差d=$\frac{{a}_{4}-{a}_{1}}{4-1}$=$\frac{7-1}{3}$=2,
則數(shù)列{an}的通項公式為an=a1+(n-1)d=1+2(n-1)=2n-1;
(2)證明:bn=$\frac{1}{{a}_{n}{•a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
即有前n項和Sn=b1+b2+…+bn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)<$\frac{1}{2}$,
即為Sn$<\frac{1}{2}$.

點評 本題考查數(shù)列的通項公式的求法,注意運用等差數(shù)列的性質(zhì),考查方程思想,同時考查數(shù)列的求和方法:裂項相消求和,考查化簡整理的運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知i為虛數(shù)單位,則復數(shù)$\frac{1+i}{2i}$=( 。
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}$iC.-$\frac{1}{2}$+$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦分別為F1,F(xiàn)2,離心率為$\frac{\sqrt{2}}{2}$,過點F1且垂直于x軸的直線被橢圓截得的弦長為2,直線l:y=kx+m與橢圓交于不同的A、B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若在橢圓C上存在點Q滿足:$\overrightarrow{OA}$+$\overrightarrow{OB}$=λ$\overrightarrow{OQ}$(O為坐標原點),求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在下列條件中:①b2-4ac≥0;②ac>0;③ab<0且ac>0;④b2-4ac≥0,$\frac{a}<0,\frac{c}{a}$>0中能成為“使二次方程ax2+bx+c=0的兩根為正數(shù)”的必要非充分條件是( 。
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,|φ|<$\frac{π}{2}$,x∈R)的圖象的一部分如圖所示.
(1)求函數(shù)f(x)的解析式.
(2)若f($\frac{4α}{π}$)=1且α∈($\frac{π}{4}$,$\frac{3π}{4}$),求sinα.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在R上定義運算?:x?y=x(1-y),若存在x1,x2(x1≠x2)使得1?(2k-3-kx)=1+$\sqrt{4-{x^2}}$成立,則實數(shù)k的取值范圍為( 。
A.$(\frac{5}{12},+∞)$B.$(\frac{5}{12},\frac{3}{4}]$C.$(0,\frac{5}{12})$D.$(\frac{1}{3},\frac{3}{4}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若滿足條件a=4,A=30°的△ABC有且只有兩個,則邊c所有可能的值域構(gòu)成的集合是(4,8)(用區(qū)間表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)y=3cos(x+100)+5sin(x+40°)的最大值是7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.計算${({\frac{9}{4}})^{\frac{1}{2}}}×{({\frac{27}{8}})^{-\frac{1}{3}}}-{(lg2)^2}-{(lg5)^2}-2lg2\;•\;lg5$的值為0.

查看答案和解析>>

同步練習冊答案