設(shè)函數(shù)f(x)=
-x2+4x-10,x∈(-∞,2]
log2(x-1)-6,x∈(2,+∞)
,若f(6-a2)>f(5a),則實數(shù)a的取值范圍為
 
考點:指、對數(shù)不等式的解法,分段函數(shù)的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:畫出圖形,發(fā)現(xiàn)f(x)是增函數(shù),所以利用函數(shù)的單調(diào)性,得到自變量的關(guān)系解不等式即可.
解答: 解:已知函數(shù)的圖象如下,

所以此函數(shù)為增函數(shù),由f(6-a2)>f(5a),得到6-a2>5a,解得-6<a<1;
故答案為:-6<a<1
點評:本題考查了利用函數(shù)圖象得到函數(shù)的單調(diào)性,進(jìn)一步利用單調(diào)性得到自變量的關(guān)系.屬于數(shù)形結(jié)合解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
-x2-2x+3,x≤0
|2-lnx|,x>0
,直線y=m與函數(shù)f(x)的圖象相交于四個不同的點,從小到大,交點橫坐標(biāo)依次記為a,b,c,d,有以下四個結(jié)論
①(1).m∈[3,4)
②abcd∈[0,e4
③a+b+c+d∈[e5+
1
e
-2,e6+
1
e2
-2)

④若關(guān)于x的方程f(x)+x=m恰有三個不同實根,則m取值唯一.
則其中正確的結(jié)論是( 。
A、①②③B、①②④
C、①③④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log4(4x+1)-
x
2

(Ⅰ)判斷f(x)的奇偶性,并說明理由;
(Ⅱ)若方程f(x)-m=0有解,求m的取值范圍;
(Ⅲ)若函數(shù)g(x)=log4[1+2x+3x+…+(n-1)x-nxa],n≥2,n∈N,對任意x∈(-∞,1]有意義,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD=AD,AF⊥PC于點F,F(xiàn)E∥CD交PD于點E.
(1)證明:CF⊥平面ADF;
(2)若AC∩BD=O,證明FO∥平面AED.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公比為q的正項等比數(shù)列,不等式x2-a3x+a4≤0的解集是{x|a1≤x≤a2},則q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年9月初,臺灣曝“地溝油”大案,味全、85度C和美心集團(tuán)等知名企業(yè)紛紛中招.內(nèi)陸某食品企業(yè)在政府部門的支持下,進(jìn)行技術(shù)攻關(guān),新上了一種從“食品殘渣”中提煉出生物柴油的項目,經(jīng)測算,該項目處理成本y(元)與月處理量x(噸)之間的函數(shù)可以近似的表示為:y=
1
3
x3-80x2+5040x,x∈[120,144)
1
2
x2-200x+80000,x∈[144,500)
,且每處理一噸“食品殘渣”,可得到能利用的生物柴油價值為200元,若該項目不獲利,政府將補(bǔ)貼.
(1)當(dāng)x∈[200,300)時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補(bǔ)貼多少元才能使該項目不虧損;
(2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=12x的焦點為( 。
A、(6,0)
B、(0,6)
C、(3,0)
D、(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=asinx+bx3+4(a∈R,b∈R),f′(x)為f(x)的導(dǎo)函數(shù),則f(2014)+f(-2014)+f′(2015)-f′(-2015)=(  )
A、0B、2014
C、2015D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log2x,x>0
f(x+3),x≤0
,則f(-4)的值是( 。
A、-2B、-1C、0D、1

查看答案和解析>>

同步練習(xí)冊答案