數(shù)列

答案:
解析:

,令,

,又


提示:

注 本題解法甚多,一般形式:(A,B是常數(shù))出自課本(代數(shù)第二冊(cè)),可用迭代的方法、數(shù)學(xué)歸納法、消去常數(shù)項(xiàng)法等,如消去常數(shù)項(xiàng)法為:,兩式相減:()=

,由此遞推可得

,上述n-1個(gè)等式相加得


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=0,且對(duì)任意k∈N*.a(chǎn)2k-1,a2k,a2k+1成等差數(shù)列,其公差為dk
(Ⅰ)若dk=2k,證明a2k,a2k+1,a2k+2成等比數(shù)列(k∈N*
(Ⅱ)若對(duì)任意k∈N*,a2k,a2k+1,a2k+2成等比數(shù)列,其公比為qk

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}滿足對(duì)任意的n有:Sn=
n(a1+an)2
,試問(wèn)該數(shù)列是怎樣的數(shù)列?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=2,an+1=
an
2
+
1
an
,試證:
2
an
2
+
1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}公差為d(d≠0),前n項(xiàng)和為Sn;
.
x
n
表示{an}的前n項(xiàng)的平均數(shù),且數(shù)列{
.
x
n
}
的前n項(xiàng)和為T(mén)n,數(shù)列{
1
Sn+1-Tn+1
}
的前n項(xiàng)和為An,則
lim
n→∞
An
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=4且對(duì)于任意的自然數(shù)n∈N+都有an+1=2(an-n+1)
(I)證明數(shù)列{an-2n}是等比數(shù)列.
(II)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案