2.已知函數(shù)y=x2,當(dāng)-2≤x≤a時函數(shù)的最大值為4,最小值為0,則實數(shù)a的取值范圍是[0,2].

分析 結(jié)合函數(shù)y=x2的圖象和性質(zhì),及已知中當(dāng)-2≤x≤a時函數(shù)的最大值為4,最小值為0,可得實數(shù)a的取值范圍.

解答 解:函數(shù)y=x2的圖象是開口朝上且以y軸為對稱軸的拋物線,
當(dāng)且僅當(dāng)x=0時,函數(shù)取最小值0,
當(dāng)x=±2時,函數(shù)取最大值4,
∵函數(shù)y=x2,當(dāng)-2≤x≤a時函數(shù)的最大值為4,最小值為0,
∴a∈[0,2],
故答案為:[0,2].

點評 本題考查的知識點是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列關(guān)系正確的是( 。
A.3∈{y|y=x2+π,x∈R}B.{(a,b)}={(b,a)}
C.{(x,y)|x2-y2=1}⊆{(x,y)|(x2-y22=1}D.{x∈R|x2-2=0}=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=$\frac{{x}^{2}+3}{{x}^{2}+1}$的值域(1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x+$\frac{a}{x}$(a>0).
(1)求函數(shù)f(x)在x∈[1,3]上的最小值和最大值(直接寫出結(jié)果即可):
(2)若函數(shù)g(x)=f(x2)-$\frac{a}{{x}^{2}}$+$\frac{4}{x}$在(0,t]上是減函數(shù),求t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知定點A(2,0),圓x2+y2=1上有一個動點Q,∠AOQ的角平分線交AQ于點P,求動點P的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列說法:
①y=f(x)與y=f(t)表示同一函數(shù);
②y=f(x)與y=f(x+1)不可能是同一個函數(shù);
③f(x)=1與g(x)=x0是同一個函數(shù):
④定義域和值域都相同的兩個函數(shù)是同一個函數(shù),
其中正確的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在直角梯形ABCD中,∠C=90°,∠B=45°,BC=4,AB=2$\sqrt{2}$,直線l垂直于BC,交BC于點E,記BE=x,0≤x≤4,若l從點B自左向右移動,試寫出陰影部分的面積y與x的函數(shù)關(guān)系式,并畫出函數(shù)的大致圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)y=f(x)在區(qū)間[-1,1]上的圖象如圖所示,試寫出它在此區(qū)間上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(1+$\sqrt{x}$)=x-2$\sqrt{x}$-1,求f(x).

查看答案和解析>>

同步練習(xí)冊答案