分析 設(shè)點P的坐標為(x,y),點Q的坐標為(x0,y0),由三角形內(nèi)角平分線定理寫出方程組,解出x0和y0,代入已知圓的方程即可.
解答 解:在△AOQ中,
∵OP是∠AOQ的平分線
∴$\frac{|AP|}{|QP|}=\frac{|OA|}{|OQ|}=2$,
設(shè)P點坐標為(x,y);Q點坐標為(x0,y0),
∴$\left\{\begin{array}{l}{x=\frac{2+2{x}_{0}}{1+2}}\\{y=\frac{0+2{y}_{0}}{1+2}}\end{array}\right.$,得$\left\{\begin{array}{l}{{x}_{0}=\frac{3x-2}{2}}\\{{y}_{0}=\frac{3}{2}y}\end{array}\right.$,
∵Q(x0,y0)在圓x2+y2=1上運動,
∴x02+y02=1
即$(\frac{3x-2}{2})^{2}+(\frac{3}{2}y)^{2}=1$,
∴$(x-\frac{2}{3})^{2}+{y}^{2}=\frac{4}{9}$.
∴動點P的軌跡為$(x-\frac{2}{3})^{2}+{y}^{2}=\frac{4}{9}$.
點評 本題考查軌跡方程的求法,訓練了代入法求曲線的軌跡方程,運用此法注意將要求的動點坐標設(shè)為(x,y),最后求得的x與y的關(guān)系式即為所求,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,$\frac{\sqrt{2}}{2}$) | B. | (0,1) | C. | (0,$\frac{\sqrt{2}}{2}$] | D. | (0,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{14}$ | B. | 3 | C. | $\sqrt{15}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [1,2] | B. | [-1,0] | C. | [0,2] | D. | [2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com