8.曲線$\sqrt{x}$+$\sqrt{y}$=1與兩坐標(biāo)軸所圍成圖形的面積是$\frac{1}{6}$.

分析 首先由題意,畫出圖象,然后利用定積分表示面積

解答 解:曲線$\sqrt{x}$+$\sqrt{y}$=1,即y=(1-$\sqrt{x}$)2即圖象與兩坐標(biāo)軸圍成的圖形如圖陰影部分

其面積為${∫}_{0}^{1}$(1-$\sqrt{x}$)2dx=${∫}_{0}^{1}$(1-2$\sqrt{x}$+x)dx=($\frac{1}{2}{x}^{2}-\frac{4}{3}{x}^{\frac{3}{2}}$+x)|${\;}_{0}^{1}$=$\frac{1}{6}$;
故答案為:$\frac{1}{6}$

點(diǎn)評 本題考查了利用定積分求曲邊梯形的面積;關(guān)鍵是正確利用定積分表示面積,然后計(jì)算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)點(diǎn)P是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上于點(diǎn),F(xiàn)1,F(xiàn)2分別是橢圓的左、右交點(diǎn),I為△PF1F2的內(nèi)心,若S${\;}_{△IP{F}_{1}}$+S${\;}_{△IP{F}_{2}}$=2S${\;}_{△I{F}_{1}{F}_{2}}$,則該橢圓的離心率是( 。
A.$\frac{1}{4}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若對?x,y∈[0,+∞),不等式4ax≤ex+y-2+ex-y-2+2恒成立,則實(shí)數(shù)a的最大值是( 。
A.$\frac{1}{4}$B.1C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=x2+bx+c,若方程f(x)=x有兩個(gè)根x1,x2,并且|x1-x2|>2,則方程f(f(x))=x的根的個(gè)數(shù)為( 。
A.0B.2C.4D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≥0}\\{{x}^{2}-2x,x<0}\end{array}\right.$,若f(-a)+f(a)≤2f(1),則實(shí)數(shù)a的取值范圍是( 。
A.[-1,0)B.(0,1)C.[-1,1]D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.解下列線性規(guī)劃問題
(1)設(shè)z=3x+4y,式中的變量x,y滿足:$\left\{\begin{array}{l}{x+y≤3\\}\\{y≤2x}\\{x,y≥0}\end{array}\right.$,求z的最大值zmax
(2)設(shè)z=x+y,式中的變量x,y滿足$\left\{\begin{array}{l}{x+2y≥2\\}\\{5x+2y≥6}\\{x,y≥0}\end{array}\right.$,求z的最小值zmin

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若a<b<c,則下列結(jié)論中正確的是( 。
A.a|c|<b|c|B.ab<bcC.a-c<b-cD.$\frac{1}{a}>\frac{1}>\frac{1}{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x3-3x,g(x)=ex-ax(a∈R),其中e是自然對數(shù)的底數(shù).
(1)求經(jīng)過點(diǎn)A(-$\frac{2}{3}$,2)與曲線f(x)相切的直線方程;
(2)若函數(shù)F(x)=g(x)-1-xlnx(x∈(0,2]),求證:當(dāng)a<e-1時(shí),函數(shù)F(x)無零點(diǎn);
(3)已知正數(shù)m滿足:存在x0∈[1,+∞),使得g(x0)+g(-x0)<mf(-x0)成立,試比較em-1與me-1的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,四棱錐P-ABCD中,PD⊥平面ABCD,△ABD是邊長為3的正三角形,BC=CD=$\sqrt{3}$,PD=4.
(Ⅰ)求證:平面PAD⊥平面PCD;
(Ⅱ)在線段PA上是否存在點(diǎn)M,使得DM∥平面PBC.若存在,求三棱錐P-BDM的體積;若不存在,請說明理由.(錐體體積公式:V=$\frac{1}{3}$Sh,其中S為底面面積,h為高)

查看答案和解析>>

同步練習(xí)冊答案