16.若滿足條件C=60°,AB=$\sqrt{3}$的△ABC有兩個,那么BC的取值范圍是( 。
A.$(1,\sqrt{2})$B.(1,2)C.$(\sqrt{2},\sqrt{3})$D.$(\sqrt{3},2)$

分析 設(shè)BC=a,由已知條件C的度數(shù),AB及BC的值,根據(jù)正弦定理用a表示出sinA,由C的度數(shù)及正弦函數(shù)的圖象可知滿足題意△ABC有兩個A的范圍,然后根據(jù)A的范圍,利用特殊角的三角函數(shù)值即可求出sinA的范圍,進(jìn)而求出a的取值范圍.

解答 解:設(shè)BC=a,由正弦定理得:$\frac{AB}{sinC}=\frac{BC}{sinA}$,即$\frac{\sqrt{3}}{\frac{\sqrt{3}}{2}}$=$\frac{a}{sinA}$,
變形得:sinA=$\frac{a}{2}$,
由題意得:當(dāng)A∈(60°,120°)時,滿足條件的△ABC有兩個,
所以$\frac{\sqrt{3}}{2}$<$\frac{a}{2}$<1,解得:$\sqrt{3}$<a<2,
則a的取值范圍是($\sqrt{3}$,2).
故選:D.

點評 此題考查了正弦定理及特殊角的三角函數(shù)值.要求學(xué)生掌握正弦函數(shù)的圖象與性質(zhì),牢記特殊角的三角函數(shù)值以及靈活運用三角形的內(nèi)角和定理這個隱含條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),對于任意實數(shù)k,下列直線被橢圓所截弦長與直線y=kx+1被截得的弦長不可能相等是( 。
A.kx+y+k=0B.kx-y-1=0C.kx+y-k=0D.kx+y-2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.用二分法來求方程x2-2=0得到的程序為(  )
A.組織結(jié)構(gòu)圖B.工序流程圖C.知識結(jié)構(gòu)圖D.程序流程圖

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}中各項都大于1,前n項和為Sn,且滿足a${\;}_{n}^{2}$+3an=6Sn-2.
(1)求數(shù)列{an}的通項公式;
(2)令bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知拋物線C:y2=2px(p>0)的焦點為F,A為C上異于原點的任意一點,過點A的直線L交C于另一點B,交x軸的正半軸于點D,且有|FA|=|FD|,當(dāng)點A的橫坐標(biāo)為3時,△ADF為正三角形.
(1)求C的方程
(2)若直線L1平行L,且L1和C有且只有一個公共點E,證明直線AE恒過定點?求△ABE的面積最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{{\begin{array}{l}{x=4cosθ}\\{y=4sinθ}\end{array}}\right.$(θ為參數(shù)),直線l經(jīng)過點P(1,2),傾斜角$α=\frac{π}{6}$.
(1)求直線l的參數(shù)方程;
(2)設(shè)直線l與圓C相交于A,B兩點,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如果$\frac{x^2}{1-2k}-\frac{y^2}{k-2}=1$表示焦點在y軸上的雙曲線,那么實數(shù)k的取值范圍是( 。
A.$({\frac{1}{2},2})$B.$({\frac{1}{2},1})∪({1,2})$C.(1,2)D.$({\frac{1}{2},∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.證明不等式$\sqrt{2}$+$\sqrt{7}$<$\sqrt{3}$+$\sqrt{6}$的最適合的方法是( 。
A.合情推理法B.綜合法C.間接證法D.分析法

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)α,β是兩個平面,l,m是兩條直線,下列各條件,可以判斷α∥β的有( 。
①l?α,m?α,且l∥β,m∥β,②l?α,m?β,且l∥β,m∥α,③l∥α,m∥β,且l∥m,④l∥α,l∥β,m∥α,m∥β,且l,m互為異面直線.
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習(xí)冊答案