A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
分析 利用直線與平面平行的性質(zhì),判斷①②③,
直線l作一平面γ,設(shè)γ∩α=a,γ∩β=b,過直線m作一平面π,設(shè)π∩α=c,π∩β=d,利用線面平行的性質(zhì)定理和面面平行的判定定理即可判斷出④.
解答 解:對于①,增加上l與m相交才能判斷出α∥β,①錯.
對于②③,α,β兩個平面都有可能α與β相交,排除②和③.
對于④,過直線l作一平面γ,設(shè)γ∩α=a,γ∩β=b,∵l∥α,l∥β,則l∥a,l∥b,∴a∥β;
過直線m作一平面π,設(shè)π∩α=c,π∩β=d,∵m∥α,m∥β,則m∥c,m∥d,∴c∥β.
∵l與m是異面直線,∴a與c必定相交,∴α∥β.因此④正確.
故選:A.
點評 本題考查平面與平面平行的判定,考查直線與平面平行的性質(zhì),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(1,\sqrt{2})$ | B. | (1,2) | C. | $(\sqrt{2},\sqrt{3})$ | D. | $(\sqrt{3},2)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1) | B. | [0,1) | C. | [0,4] | D. | [-4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2)∪(0,2) | B. | (-2,0)∪(2,+∞) | C. | (-∞,-2)∪(-2,0) | D. | (0,2)∪(2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com