19.根據(jù)數(shù)列2,5,9,19,37,75…的前六項(xiàng)找出規(guī)律,可得a7=( 。
A.140B.142C.146D.149

分析 作差分析可得9-5=4=2×2,19-9=10=5×2,…,從而求得.

解答 解:分析可知,
9-5=4=2×2,
19-9=10=5×2,
37-19=18=9×2,
75-37=38=19×2;
∴a7=75+2×37=149,
故選D.

點(diǎn)評(píng) 本題考查了數(shù)列的性質(zhì)的判斷與應(yīng)用,同時(shí)考查了歸納思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.定義:如果函數(shù)f(x)在[a,b]上存在x1,x2(a<x1<x2<b)滿足f'(x1)=$\frac{f(b)-f(a)}{b-a}$,f'(x2)=$\frac{f(b)-f(a)}{b-a}$,則稱函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”,已知函數(shù)f(x)=2x3-x2+m是[0,2a]上“雙中值函數(shù)”,則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{1}{8}$,$\frac{1}{4}$)B.($\frac{1}{12}$,$\frac{1}{4}$)C.($\frac{1}{12}$,$\frac{1}{8}$)D.($\frac{1}{8}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知全集U={1,2,4,6,8},集合A={2,6},B={1,2,4},則∁U(A∪B)={8}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}中,an+1=Sn-n+3,n∈N*,a1=2,求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)為F1,F(xiàn)2,離心率為$\frac{\sqrt{2}}{2}$,點(diǎn)M是橢圓上一點(diǎn),△MF1F2的面積的最大值為1.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)不經(jīng)過(guò)焦點(diǎn)F1的直線L與橢圓交于兩個(gè)不同的點(diǎn)A,B,焦點(diǎn)F2到直線L的距離為d,如果直線AF1,L,BF1的斜率依次成等差數(shù)列,求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.將一顆質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1、2、3、4、5、6)先后拋擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b.
(1)設(shè)復(fù)數(shù)z=a+bi(i為虛數(shù)單位),求事件“z-3i為實(shí)數(shù)”的概率;
(2)求點(diǎn)P(a,b)落在不等式組$\left\{\begin{array}{l}{a-b+2≥0}\\{0≤a≤4}\\{b≥0}\end{array}\right.$,表示的平面區(qū)域內(nèi)(含邊界)的概率..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知直線(a-2)x+ay-1=0與直線2x+3y+5=0平行,則a的值為( 。
A.-6B.6C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.張帆手上有只股票“梅雁吉樣”(股票代碼:600868)昨天得了個(gè)漲停板(上漲10%),今天恰得了個(gè)跌停板(下跌10%),那么這兩天張帆就“梅雁吉樣”這只股票的收益為(  )
A.B.C.不贏不虧D.不知道

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知命題p:?x∈(0,+∞),2x>log2x,
命題q:?x0∈(0,+∞),sinx0=lnx0
則下列命題中的真命題是( 。
A.(¬p)∨(¬q)B.(¬p)∧(¬q)C.(¬p)∧qD.p∧q

查看答案和解析>>

同步練習(xí)冊(cè)答案