8.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若$\frac{sinC}{sinA}$=2,b=$\sqrt{3}$a,則B=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

分析 利用正弦定理與余弦定理即可得出.

解答 解:在△ABC中,∵$\frac{sinC}{sinA}$=2,∴c=2a,又b=$\sqrt{3}$a,
則cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{{a}^{2}+4{a}^{2}-3{a}^{2}}{2a×2a}$=$\frac{1}{2}$,
B∈(0,π),∴B=$\frac{π}{3}$.
故選:C.

點(diǎn)評(píng) 本題考查了正弦定理余弦定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若函數(shù)f(x)=$\frac{1}{2}$ex+x-6的零點(diǎn)在區(qū)間(n,n+1)(n∈N*)內(nèi),則n=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.定義在R上的奇函數(shù)f(x)滿足f(x+1)=f(1-x),且x∈[0,1]時(shí),f(x)=$\sqrt{2x}$,則f(11.5)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.有3個(gè)興趣小組,甲、乙兩位同學(xué)各自參加其中一個(gè)小組,每位同學(xué)參加各個(gè)小組的可能性相同,則這兩位同學(xué)參加同一個(gè)興趣小組的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知集合M={x|x2-2x-3<0}和N={x|x>1}的關(guān)系如圖所示,則陰影部分所表示的集合為{x|1<x<3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知a,b∈R,i是虛數(shù)單位,若a+i=3-bi,則$\frac{a+bi}{1-i}$=( 。
A.2-iB.2+iC.1-2iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知i是虛數(shù)單位,則滿足z-i=|3+4i|的復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)點(diǎn)所在的象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow$=(3,-2)且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$,則m=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.計(jì)算$\sqrt{5\sqrt{5\sqrt{5\sqrt{5\sqrt{5\sqrt{5}}}}}}$可采用如圖所示的算法,則圖中①處應(yīng)該填的語(yǔ)句是( 。
A.T=T•T$\sqrt{a}$B.T=T•TaC.T=T•aD.T=T•T$\sqrt{Ta}$

查看答案和解析>>

同步練習(xí)冊(cè)答案