16.已知變換T把平面上的點(3,-4),(5,0)分別變換成(2,-1),(-1,2),試求變換T對應(yīng)的矩陣M.

分析 先設(shè)出所求矩陣,利用待定系數(shù)法建立一個四元一次方程組,解方程組即可.

解答 解:設(shè)$M=[{\begin{array}{l}a&b\\ c&d\end{array}}]$,由題意,得$[{\begin{array}{l}a&b\\ c&d\end{array}}][{\begin{array}{l}3&5\\{-4}&0\end{array}}]=[{\begin{array}{l}2&{-1}\\{-1}&2\end{array}}]$,…(3分)
∴$\left\{\begin{array}{l}3a-4b=2\;\\ 5a=-1\;\\ 3c-4d=-1\;\\ 5c=2\;.\end{array}\right.$…(5分)
解得$\left\{\begin{array}{l}a=-\frac{1}{5}\\ b=-\frac{13}{20}\\ c=\frac{2}{5}\\ d=\frac{11}{20}\end{array}\right.$.…(9分)
即$M=[{\begin{array}{l}{-\frac{1}{5}}&{-\frac{13}{20}}\\{\frac{2}{5}}&{\frac{11}{20}}\end{array}}]$.                                             …(10分)

點評 本題考查待定系數(shù)法求矩陣,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,以x軸正半軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為ρ=4sinθ,θ∈[0,$\frac{π}{2}$].
(1)先把半圓C的極坐標(biāo)方程化為直角坐標(biāo)方程,再化為參數(shù)方程;
(2)已知直線l:y=-$\frac{{\sqrt{3}}}{3}$x+6,點P在半圓C上,且點P到直線l的距離為半圓C上的點到直線l的距離的最小值,根據(jù)(1)中得到的參數(shù)方程,確定點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,△ABD是邊長為2$\sqrt{3}$的正三角形,∠CBD=∠CDB=30°,E為棱PA的中點.
(Ⅰ)求證:DE∥平面PBC;
(Ⅱ)若平面PAB⊥平面ABCD,PA=PB=2,求點E到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,三棱柱ABC-A1B1C1中,平面ABB1A1⊥平面ABC,△ABC為等邊三角形,AB=$\frac{1}{2}$AA1=1,∠A1AB=120°,D,E分別是BC,A1C1的終點.
(1)試在棱AB上找一點F,使DE∥平面A1CF;
(2)在(1)的條件下,求二面角A-A1C-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=$\frac{sinx•cosx}{1+sinx+cosx}$的最大值為( 。
A.-$\sqrt{3}$-1B.$\frac{\sqrt{2}-1}{2}$C.$\frac{-\sqrt{2}-1}{2}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系.曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2+2cos?\\ y=2sin?\end{array}$(?為參數(shù),且0≤?<2π),曲線l的極坐標(biāo)方程為ρ=$\frac{2-3k}{2sinθ-2kcosθ}$(k是常數(shù),且k∈R).
(Ⅰ)求曲線C的普通方程和曲線l直角坐標(biāo)方程;
(Ⅱ)若曲線l被曲線C截的弦是以($\frac{3}{2}$,1)為中點,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an},滿足a1=1,3(a1+a2+a3+…+an)=(n+2)an對任意正整數(shù)n都成立,則a4=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=loga(2-x)在其定義域上單調(diào)遞減,則函數(shù)g(x)=loga(1-x2)的單調(diào)減區(qū)間是( 。
A.(-∞,0]B.(-1,0)C.[0,+∞)D.[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在正方體ABCD-A1B1C1D1中,E是A1D1的中點,則直線AE與直線CC1所成角的正切值是( 。
A.$\frac{1}{2}$B.2C.$\frac{{\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

同步練習(xí)冊答案