設(shè)命題p:方程
x2
a
+
y2
a-1
=1表示雙曲線,命題q:函數(shù)f(x)=x2+(2a-3)x+1有兩個(gè)不同的零點(diǎn),如果“p∨q”為真,且“p∧q”為假,求a的取值范圍.
考點(diǎn):復(fù)合命題的真假
專題:簡(jiǎn)易邏輯
分析:若命題p為真,利用雙曲線的標(biāo)準(zhǔn)方程可得a(a-1)<0,解得a的范圍.若命題q為真,則△>0,解得a范圍.由“p∨q”為真,“p∧q”為假,
可得p與q有且只有一個(gè)為真.
解答: 解:若命題p為真,則a(a-1)<0,解得0<a<1.
若命題q為真,則△=(2a-3)2-4>0,解得a<
1
2
a>
5
2

∵“p∨q”為真,“p∧q”為假,
∴p與q有且只有一個(gè)為真. 
(1)若p真q假,則
0<a<1
1
2
≤a≤
5
2
,解得
1
2
≤a<1

(2)若p假q真,則
a≤0或a≥1
a<
1
2
或a>
5
2
,解得a≤0或a>
5
2

綜上所述,a的取值范圍是(-∞,0]∪[
1
2
,1)
(
5
2
,+∞)
點(diǎn)評(píng):本題考查了雙曲線的標(biāo)準(zhǔn)方程、一元二次方程由實(shí)數(shù)根與判別式的關(guān)系、復(fù)合命題的判定方法,考查了推理能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,EA與圓O相切于點(diǎn)A,D是EA的中點(diǎn),過(guò)點(diǎn)D引圓O的割線,與圓O相交于點(diǎn)B,C,連結(jié)EC.
求證:∠DEB=∠DCE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)(m,1)在不等式2x+3y-5>0所表示的平面區(qū)域內(nèi),則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,若∠A=30°,a=b=1,則S△ABC=( 。
A、
3
4
B、
3
2
C、
1
4
D、
2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC的兩個(gè)頂點(diǎn)為A(-3,0),B(3,0),△ABC周長(zhǎng)為16,則頂點(diǎn)C的軌跡方程為( 。
A、
x2
25
+
y2
16
=1(y≠0)
B、
y2
25
+
x2
16
=1(y≠0)
C、
x2
16
+
y2
9
=1(y≠0)
D、
y2
16
+
x2
9
=1(y≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),f(x)為偶函數(shù),且部分圖象如圖所示,△KML為等腰直角三角形,其中∠KML=90°,|KL|=2.
(1)求f(x)的解析式;
(2)求在[0,10]上的單調(diào)遞增區(qū)間;
(3)若方程f(x)=a在(0,
8
3
)上有兩個(gè)不同的實(shí)根,試求a的取值范圍,并求兩根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,則其體積為( 。
A、
3
B、
π
3
C、π
D、
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
lnx,x>0
-2x-1,x≤0
,D是由x軸和曲線y=f(x)及該曲線在點(diǎn)(1,0)處的切線所圍成的封閉區(qū)域,則z=x-2y在D上的最大值為( 。
A、-
1
2
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的定義域:
(1)y=
x+2
+
1
x2-x-6
;
(2)y=
(x+1)0
|x|-x

(3)y=
5-x
-
x-5
-
1
x2-9

查看答案和解析>>

同步練習(xí)冊(cè)答案