【題目】已知函數(shù)f(x)=3x2﹣2ax﹣b,其中a,b是實(shí)數(shù).
(1)若不等式f(x)≤0的解集是[0,6],求ab的值;
(2)若b=3a,對任意x∈R,都有f(x)≥0,且存在實(shí)數(shù)x,使得f(x)≤2﹣ a,求實(shí)數(shù)a的取值范圍;
(3)若方程有一個根是1,且a,b>0,求 的最小值,及此時a,b的值.

【答案】
(1)解:依題意,0+6= ,0×6= ,解得a=9,b=0,∴ab=1
(2)解:若b=3a,則f(x)=3x2﹣2ax﹣3a.

依題意, ,由①得,﹣9≤a≤0,

由②得,a≥0或a≤﹣6,

所以,﹣9≤a≤﹣6或a=0為所求


(3)解:∵方程有一個根是1,且a、b>0,∴3﹣2a﹣b=0,即2a+b=3,

∵2a+b=3可得(2a+1)(b+2)=6,

設(shè)u=2a+1,v=b+2,可得u,v>0,u+v=6,

= =

當(dāng)且僅當(dāng)u=v=3,即a=b=1時取等號


【解析】(1)利用不等式的解集,轉(zhuǎn)化為方程的根,求解即可.(2)利用二次函數(shù)的性質(zhì),列出不等式組求解即可.(3)利用基本不等式轉(zhuǎn)化求解函數(shù)的最值的即可.
【考點(diǎn)精析】掌握函數(shù)的最值及其幾何意義是解答本題的根本,需要知道利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲担

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知an=logn+1(n+2)(n∈N+),觀察下列運(yùn)算:a1a2=log23log34= =2;a1a2a3a4a5a6=log23log34…log67lg78= =3;….定義使a1a2a3…ak為整數(shù)的k(k∈N+)叫做希望數(shù),則在區(qū)間[1,2016]內(nèi)所有希望數(shù)的和為(
A.1004
B.2026
C.4072
D.22016﹣2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程.

在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知點(diǎn).若點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn)且與曲線相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是利用斜二測畫法畫出的△ABO的直觀圖,已知O′B′=4,且△ABO的面積為16,過A′作A′C′⊥x′軸,則A′C′的長為(

A.
B.
C.
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,焦點(diǎn)在x軸上的橢圓 =1(a>0)的左、右焦點(diǎn)分別為F1、F2 , P是橢圓上位于第一象限內(nèi)的一點(diǎn),且直線F2P與y軸的正半軸交于A點(diǎn),△APF1的內(nèi)切圓在邊PF1上的切點(diǎn)為Q,若|F1Q|=4,則該橢圓的離心率為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知中心在原點(diǎn),離心率為的橢圓的一個焦點(diǎn)為圓 的圓心.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)是橢圓上一點(diǎn),過作兩條斜率之積為的直線, ,當(dāng)直線, 都與圓相切時,求的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,已知F1 , F2分別是橢圓E: 的左、右焦點(diǎn),A,B分別是橢圓E的左、右頂點(diǎn),且

(1)求橢圓E的離心率;
(2)已知點(diǎn)D(1,0)為線段OF2的中點(diǎn),M 為橢圓E上的動點(diǎn)(異于點(diǎn)A、B),連接MF1并延長交橢圓E于點(diǎn)N,連接MD、ND并分別延長交橢圓E于點(diǎn)P、Q,連接PQ,設(shè)直線MN、PQ的斜率存在且分別為k1、k2 , 試問是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱中, , , 的中點(diǎn).

(1)證明: 平面;

(2)若,點(diǎn)在平面的射影在上,且側(cè)面的面積為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017湖南長沙二!已知橢圓)的離心率為,分別是它的左、右焦點(diǎn),且存在直線,使關(guān)于的對稱點(diǎn)恰好是圓)的一條直線的兩個端點(diǎn).

(1)求橢圓的方程;

(2)設(shè)直線與拋物線)相交于兩點(diǎn),射線,與橢圓分別相交于點(diǎn),試探究:是否存在數(shù)集,當(dāng)且僅當(dāng)時,總存在,使點(diǎn)在以線段為直徑的圓內(nèi)?若存在,求出數(shù)集;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案