13.已知cosα=$\frac{1}{3}$,則cos2α=( 。
A.$-\frac{5}{9}$B.$\frac{{\sqrt{6}}}{3}$C.1D.$-\frac{7}{9}$

分析 直接利用二倍角的余弦函數(shù)化簡求解即可.

解答 解:cosα=$\frac{1}{3}$,則cos2α=2cos2α-1=2×$\frac{1}{9}$-1=-$\frac{7}{9}$.
故選:D.

點評 本題考查二倍角公式的應(yīng)用,三角函數(shù)化簡求值,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知向量$\overrightarrow a$=(1,1),|$\overrightarrow b$|=1,|2$\overrightarrow{a}$+$\overrightarrow b$|=3,則|$\overrightarrow a$-$\overrightarrow b$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知實數(shù)x,y的取值如表所示.
x01234
y12465
(1)請根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$.
注:回歸方程為$\widehat{y}$=$\widehat$x+$\widehat{a}$,其中$\widehat$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}$,a=$\overline y-b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.分別求出下列兩個程序的運行結(jié)果:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x-alnx,(a∈R).
(1)討論函數(shù)f(x)在定義域內(nèi)的極值點的個數(shù);
(2)設(shè)g(x)=-$\frac{a+1}{x}$,若在[1,e]上存在一點x0,使得f(x0)<g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax在區(qū)間($\frac{1}{3},+∞}$)上單調(diào)遞增,則實數(shù)a的取值范圍是[-$\frac{2}{9}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)計算4x${\;}^{\frac{1}{4}}$(-3x${\;}^{\frac{1}{4}}$y${\;}^{-\frac{1}{3}}$)÷[-6(x${\;}^{-\frac{1}{2}}$y${\;}^{-\frac{2}{3}}$)];
(2)$\frac{\sqrt{m}•\root{3}{m}•\root{4}{m}}{(\root{6}{m})^{5}•{m}^{\frac{1}{4}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若函數(shù)f(x)=(x+1)(x2+ax)為奇函數(shù),則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)中為偶函數(shù)的是(  )
A.y=$\sqrt{x}$B.y=|x|(x≥1)C.y=x${\;}^{\frac{2}{3}}$D.y=x3+1

查看答案和解析>>

同步練習(xí)冊答案