4.已知實(shí)數(shù)x,y的取值如表所示.
x01234
y12465
(1)請(qǐng)根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$.
注:回歸方程為$\widehat{y}$=$\widehat$x+$\widehat{a}$,其中$\widehat$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}$,a=$\overline y-b\overline x$.

分析 (1)利用描點(diǎn)的方法繪制散點(diǎn)圖;
(2)根據(jù)所給的這組數(shù)據(jù)求出利用最小二乘法所需要的幾個(gè)數(shù)據(jù),代入求系數(shù)b的公式,求得結(jié)果,再把樣本中心點(diǎn)代入,求出a的值,得到線性回歸方程.

解答 解:(1)散點(diǎn)圖如下:

(2)$\overline x=\frac{0+1+2+3+4}{5}=2$,
$\overline y=\frac{1+2+4+6+5}{5}=3.6$,
$\sum_{i=1}^5{{x_i}{y_i}}=2+8+18+20=48$,
$\sum_{i=1}^4{x_i^2}=1+4+9+16=30$,
故$\widehat$=$\frac{48-5×2×3.6}{30-5×4}$=1.2,則$\widehat{a}$=3.6-1.2×2=1.2,
所以回歸直線的方程為$\hat{y}$=1.2x+1.2.

點(diǎn)評(píng) 本題考查線性回歸方程,兩個(gè)變量之間的關(guān)系,除了函數(shù)關(guān)系,還存在相關(guān)關(guān)系,通過建立回歸直線方程,就可以根據(jù)其部分觀測(cè)值,獲得對(duì)這兩個(gè)變量之間整體關(guān)系的了解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=$\frac{{\root{3}{x^2}}}{e^x}$在x∈[-2,2]上的極值點(diǎn)的位置有( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某公司在一次對(duì)員工的休閑方式(看電視與運(yùn)動(dòng))與性別之間是否有關(guān)系的調(diào)查中,共調(diào)查了124人,其中女性70人中主要休閑方式是看電視的有43人,男性中主要休閑方式是運(yùn)動(dòng)的有33人.
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(2)檢驗(yàn)性別與休閑方式是否有關(guān)系.
${Χ^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$
P(Χ2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)y=f(x)對(duì)任意實(shí)數(shù)x、y∈R滿足:f(x•y)=f(x)+f(y)+1.
①求f(1)、f(-1)的值;
②證明:函數(shù)y=f(x)在R上是偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知矩陣A=$[\begin{array}{l}{a}&{1}\\&{0}\end{array}]$,其中a,b∈R,若點(diǎn)P(1,1)在矩陣A的變換下得到點(diǎn)Q(3,3),向量$\overrightarrow{β}$=$[\begin{array}{l}{5}\\{9}\end{array}]$.
(1)求a,b的值及矩陣A的特征值、特征向量;
(2)計(jì)算A20$\overrightarrow{β}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若數(shù)列{an}滿足$\frac{1}{{{a_{n+1}}}}-\frac{p}{a_n}$=0,n∈N*,p為非零常數(shù),則稱數(shù)列{an}為“夢(mèng)想數(shù)列”.已知正項(xiàng)數(shù)列$\left\{{\frac{1}{b_n}}\right\}$為“夢(mèng)想數(shù)列”,且b1b2b3…b99=399,則b8+b92的最小值是( 。
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=Asinωx(A>0,ω>0)的部分圖象如圖所示,則f(1)+f(2)+…+f(2017)=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知cosα=$\frac{1}{3}$,則cos2α=(  )
A.$-\frac{5}{9}$B.$\frac{{\sqrt{6}}}{3}$C.1D.$-\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C1的極坐標(biāo)方程為ρ2=$\frac{2}{1+si{n}^{2}θ}$,直線?的極坐標(biāo)方程為ρ=$\frac{4}{\sqrt{2}sinθ+cosθ}$.
(Ⅰ)寫出曲線C1與直線?的直角坐標(biāo)方程;
(Ⅱ)設(shè)Q為曲線C1上一動(dòng)點(diǎn),求Q點(diǎn)到直線?距離的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案