5.(1)計(jì)算4x${\;}^{\frac{1}{4}}$(-3x${\;}^{\frac{1}{4}}$y${\;}^{-\frac{1}{3}}$)÷[-6(x${\;}^{-\frac{1}{2}}$y${\;}^{-\frac{2}{3}}$)];
(2)$\frac{\sqrt{m}•\root{3}{m}•\root{4}{m}}{(\root{6}{m})^{5}•{m}^{\frac{1}{4}}}$.

分析 (1)先把系數(shù)運(yùn)算,再利用有理指數(shù)冪的運(yùn)算性質(zhì)化簡(jiǎn)得答案;
(2)化根式為分?jǐn)?shù)指數(shù)冪,再由有理指數(shù)冪的運(yùn)算性質(zhì)化簡(jiǎn)得答案.

解答 解:(1)4x${\;}^{\frac{1}{4}}$(-3x${\;}^{\frac{1}{4}}$y${\;}^{-\frac{1}{3}}$)÷[-6(x${\;}^{-\frac{1}{2}}$y${\;}^{-\frac{2}{3}}$)]
=4×(-3)÷(-6)${x}^{\frac{1}{4}+\frac{1}{4}-(-\frac{1}{2})}{y}^{-\frac{1}{3}-(-\frac{2}{3})}$=$2x{y}^{\frac{1}{3}}$;
(2)$\frac{\sqrt{m}•\root{3}{m}•\root{4}{m}}{(\root{6}{m})^{5}•{m}^{\frac{1}{4}}}$=$\frac{{m}^{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}}{{m}^{\frac{5}{6}+\frac{1}{4}}}$=$\frac{{m}^{\frac{13}{12}}}{{m}^{\frac{13}{12}}}=1$.

點(diǎn)評(píng) 本題考查根式與分?jǐn)?shù)指數(shù)冪的化簡(jiǎn)求值,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某公司在一次對(duì)員工的休閑方式(看電視與運(yùn)動(dòng))與性別之間是否有關(guān)系的調(diào)查中,共調(diào)查了124人,其中女性70人中主要休閑方式是看電視的有43人,男性中主要休閑方式是運(yùn)動(dòng)的有33人.
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(2)檢驗(yàn)性別與休閑方式是否有關(guān)系.
${Χ^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$
P(Χ2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=Asinωx(A>0,ω>0)的部分圖象如圖所示,則f(1)+f(2)+…+f(2017)=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知cosα=$\frac{1}{3}$,則cos2α=( 。
A.$-\frac{5}{9}$B.$\frac{{\sqrt{6}}}{3}$C.1D.$-\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.4年一屆的歐洲杯的關(guān)注度是僅次于世界杯的第二大足球賽事,2016年歐洲杯于2016年6月10日至7月10日在法國(guó)境內(nèi)9座城市的12座球場(chǎng)內(nèi)舉行,共24支國(guó)家隊(duì)參賽,比賽第一階段是小組賽,每個(gè)小組4支國(guó)家隊(duì),組內(nèi)任兩只球隊(duì)之間需進(jìn)行一場(chǎng)較量,采取積分制,獲勝一場(chǎng)3分,打平一場(chǎng)1分,輸一場(chǎng)0分,每個(gè)小組根據(jù)積分取得資格進(jìn)入下一階段比賽-淘汰賽.
(1)在小組賽階段,若東道主法國(guó)隊(duì)在所處的A組中,打勝一場(chǎng)概率為$\frac{1}{2}$,打平一場(chǎng)概率為$\frac{1}{3}$,輸一場(chǎng)概率為$\frac{1}{6}$,每場(chǎng)比賽輸贏互不影響;那么小組賽結(jié)束后,法國(guó)隊(duì)積分為3分的概率;
(2)在淘汰賽階段,每一場(chǎng)比賽必分輸贏,當(dāng)出現(xiàn)平局時(shí)采用點(diǎn)球的方式?jīng)Q出勝負(fù);若德國(guó)門將諾伊爾撲出點(diǎn)球的成功率為$\frac{1}{3}$,在5次點(diǎn)球中,求他撲出的點(diǎn)球個(gè)數(shù)X的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若復(fù)數(shù)z滿足|z-1-2i|=2,則|z-3|的最小值為2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,在△ABC中,AB=5,AC=9,若O為△ABC內(nèi)一點(diǎn),且滿足|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,則$\overrightarrow{AO}$•$\overrightarrow{BC}$的值是28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C1的極坐標(biāo)方程為ρ2=$\frac{2}{1+si{n}^{2}θ}$,直線?的極坐標(biāo)方程為ρ=$\frac{4}{\sqrt{2}sinθ+cosθ}$.
(Ⅰ)寫出曲線C1與直線?的直角坐標(biāo)方程;
(Ⅱ)設(shè)Q為曲線C1上一動(dòng)點(diǎn),求Q點(diǎn)到直線?距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.?dāng)?shù)列{an}滿足an+1=an(an-n)+1,n∈N+
(1)當(dāng)a1=2時(shí),求a2,a3,a4,并猜想出an的一個(gè)通項(xiàng)公式(不要求證)
(2)若a1≥3,用數(shù)學(xué)歸納法證明:對(duì)任意的n=1,2,3,…,都有an≥n+2.

查看答案和解析>>

同步練習(xí)冊(cè)答案