【題目】如圖,在四棱錐 中, ,且 .
(1)證明:平面 ⊥平面 ;
(2)若 , ,求二面角 的余弦值.
【答案】
(1)解:由已知 ,得AB⊥AP , CD⊥PD.
由于AB∥CD , 故AB⊥PD , 從而AB⊥平面PAD.
又AB 平面PAB , 所以平面PAB⊥平面PAD.
(2)解:在平面 內(nèi)做 ,垂足為 ,
由(1)可知, 平面 ,故 ,可得 平面 .
以 為坐標(biāo)原點(diǎn), 的方向?yàn)? 軸正方向, 為單位長(zhǎng),建立如圖所示的空間直角坐標(biāo)系 .
由(1)及已知可得 , , , .
所以 , , , .
設(shè) 是平面 的法向量,則
,即 ,
可取 .
設(shè) 是平面 的法向量,則
,即 ,
可取 .
則 ,
所以二面角 的余弦值為
【解析】本題主要考查面面垂直的判定以及利用空間向量求解二面角大小的問(wèn)題。第一小題主要就是面面垂直判定定理的應(yīng)用,要正面面面垂直,只要證明面內(nèi)的一條線垂直于另一個(gè)平面即可,也就是要利用線面垂直的判定定理證明即可。第二問(wèn)建立空間直角坐標(biāo)系,利用空間向量中的夾角公式求解二面角的大小。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 在橢圓C: 上,F(xiàn)為右焦點(diǎn),PF⊥垂直于x軸,A,B,C,D為橢圓上的四個(gè)動(dòng)點(diǎn),且AC,BD交于原點(diǎn)O.
(1)求橢圓C的方程;
(2)判斷直線l: 與橢圓的位置關(guān)系;
(3)設(shè)A(x1 , y1),B(x2 , y2)滿足 = ,判斷kAB+kBC的值是否為定值,若是,請(qǐng)求出此定值,并求出四邊形ABCD面積的最大值,否則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù) 的最小值為0,不等式 的解集為 .
(1)求集合 ;
(2)設(shè)集合 ,若集合 是集合 的子集,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在高為2的梯形ABCD中,AB∥CD,AB=2,CD=5,過(guò)A、B分別作AE⊥CD,BF⊥CD,垂足分別為E、F.已知DE=1,將梯形ABCD沿AE、BF同側(cè)折起,得空間幾何體ADE﹣BCF,如圖2.
(Ⅰ)若AF⊥BD,證明:△BDE為直角三角形;
(Ⅱ)若DE∥CF, ,求平面ADC與平面ABFE所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)甲,乙兩種產(chǎn)品均需用兩種原料,已知生產(chǎn)1噸每種產(chǎn)品需用原料及每天原料的可用限額如下表所示,如果生產(chǎn)1噸甲,乙產(chǎn)品可獲利潤(rùn)分別為3萬(wàn)元、4萬(wàn)元,則該企業(yè)可獲得最大利潤(rùn)為__________萬(wàn)元.
甲 | 乙 | 原料限額 | |
A(噸) | 3 | 2 | 12 |
B(噸) | 1 | 2 | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一張坐標(biāo)紙上涂著圓E: 及點(diǎn)P(1,0),折疊此紙片,使P與圓周上某點(diǎn)P'重合,每次折疊都會(huì)留下折痕,設(shè)折痕與直線EP'交于點(diǎn)M .
(1)求 的軌跡 的方程;
(2)直線 與C的兩個(gè)不同交點(diǎn)為A , B , 且l與以EP為直徑的圓相切,若 ,求△ABO的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè) 是實(shí)數(shù),則“ ”是“ ”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)為F1(﹣ ,0),F(xiàn)2( ,0),M是橢圓上一點(diǎn),若 =0,| || |=8.
(1)求橢圓的方程;
(2)點(diǎn)P是橢圓上任意一點(diǎn),A1、A2分別是橢圓的左、右頂點(diǎn),直線PA1 , PA2與直線x= 分別交于E,F(xiàn)兩點(diǎn),試證:以EF為直徑的圓交x軸于定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了引導(dǎo)居民合理用水,某市決定全面實(shí)施階梯水價(jià),階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià),具體劃分標(biāo)準(zhǔn)如表:
階梯級(jí)別 | 第一階梯水量 | 第二階梯水量 | 第三階梯水量 |
月用水量范圍(單位:立方米) | (0,10] | (10,15] | (15,+∞) |
從本市隨機(jī)抽取了10戶家庭,統(tǒng)計(jì)了同一個(gè)月的用水量,得到如圖所示的莖葉圖.
(1)現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯水量的戶數(shù)的分布列和均值;
(2)用抽到的10戶家庭作為樣本估計(jì)全市的居民用水情況,從全市依次隨機(jī)抽取10戶,若抽到n戶月用水量為第二階梯水量的可能性最大,求出n的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com